Environmental Statement **Volume 6, Annex 5.2: Offshore Ornithology Displacement Technical Report** | ent status | | | | | |-------------------------|---|--|---|---| | Purpose of document | Authored
by | Reviewed by | Approved by | Review date | | Application | RPS | Mona
Offshore
Wind Ltd | Mona
Offshore
Wind Ltd | Feb 2024 | | Examination- Deadline 2 | <u>RPS</u> | Mona
Offshore
Wind Ltd | Mona
Offshore
Wind Ltd | 27 Aug 2024 | | Prepared by: | | or: | | | | RPS | | shore Wind | Limited. | | | | Purpose of document Application Examination- Deadline 2 | Purpose of document Authored by Application RPS Examination- Deadline 2 By: Prepared for | Purpose of document Authored by Reviewed by Application RPS Mona Offshore Wind Ltd Examination- Deadline 2 RPS Mona Offshore Wind Ltd by: Prepared for: | Purpose of document Authored by Reviewed by Approved by Application RPS Mona Offshore Wind Ltd Mona Offshore Wind Ltd Examination- Deadline 2 RPS Mona Offshore Wind Ltd Mona Offshore Wind Ltd | # **Contents** | 1 OFFS | SHORE ORNITHOLOGY DISPLACEMENT TECHNICAL REPORT | 1 | |---------------|--|---------------| | 1.1 | Introduction | 1 | | | 1.1.1 Background | 1 | | | 1.1.2 Aim of report | 2 | | 1.2 | Consultation | 3 | | | 1.2.2 Evidence Plan process | 3 | | 1.3 | Methodology | 6 | | | 1.3.2 Screening species for displacement assessment | 6 | | | 1.3.3 Seasonality | 10 | | | 1.3.4 Buffers for displacement | 10 | | | 1.3.5 Abundance estimates | 13 | | | 1.3.6 Displacement parameters | 16 | | 1.4 | Results | 17 | | | 1.4.1 Common guillemot | 17 | | | 1.4.2 Razorbill | 19 | | | 1.4.3 Atlantic puffin | 23 | | | 1.4.4 Northern gannet | 27 | | | 1.4.5 Black-legged kittiwake | 29 | | | 1.4.6 Manx shearwater | 34 | | | 1.4.7 Red-throated diver | 38 | | 1.5 | Summary Tables | 41 | | 1.6 | References | 47 | | | for displacement and the Mona Offshore Ornithology Offshore Cable Corridor | | | Tables | | | | Table 1.1: | Summary of key topics and issues raised during consultation activities undertaken for the Offshore Wind Project relevant to offshore ornithology displacement technical report of the Environmental Statement. | he | | Table 1.2: | Displacement screening based on species abundance within the Mona Array Area plus a 4km buffer during the site-specific surveys, displacement vulnerability, and connectivity t designated site. | a 2km to
o | | Table 1.3: | Seasonal definitions as the basis for assessment, from Furness (2015) | 10 | | Table 1.4: | Mean peak abundances for use in the assessment for each season. | 14 | | Table 1.5: | Displacement and mortality rates for use in the assessment during the operations and | | | | maintenance phase. | 16 | | Table 1.6: | Displacement and mortality rates for use in the assessment during the construction and decommissioning phases. | 17 | | Table 1.7: | Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer du | iring the | | Table 4.0 | breeding season (construction and decommissioning). | | | Table 1.8: | Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer du | - | | T-11- 4-0 | non-breeding season (construction and decommissioning). | | | Table 1.9: | Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer du breeding season (operations and maintenance phase). | - | | Table 1.10: | Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer du | | | | non-breeding season (operations and maintenance phase) | - | | Table 1.11: | Mean predicted razorbill mortality for the Mona Array plus 2 km buffer during Spring migration (construction and decommissioning). | 20 | |-------------|--|------| | Table 1.12: | • | g | | Table 1.13: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | 20 | | Table 1.14: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | | | Table 1.15: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Spring migr (operations and maintenance phase). | atio | | Table 1.16: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the breedin season (operations and maintenance phase). | g | | Table 1.17: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | | | Table 1.18: | Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase). | | | Table 1.19: | Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the | | | Table 1.20: | breeding season (construction and decommissioning) | n- | | Table 1.21: | | | | Table 1.22: | Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the no breeding season (operations and maintenance phase). All entries are zero | n- | | Table 1.23: | Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spr migration (construction and decommissioning). | ing | | Table 1.24: | Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | | | Table 1.25: | Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Aut migration (construction and decommissioning). | umn | | Table 1.26: | Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spr migration (operations and maintenance phase). | ing | | Table 1.27: | Mean predicted northern gannet mortality for the Mona Array Area 2 km buffer during the bree season (operations and maintenance phase). | ding | | Table 1.28: | Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Aut migration (operations and maintenance phase). | umn | | Table 1.29: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning) | ng | | Table 1.30: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | ng | | Table 1.31: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning) | ng | | Table 1.32: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase) | ng | | Table 1.33: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | ng | | Table 1.34: | Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase) | ng | | Table 1.35: | Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during th | е | | Table 1.36: | Spring migration (construction and decommissioning) | е | | Table 1.37: | breeding season (construction and decommissioning). Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Autumn migration (construction and decommissioning). | е | | Table 1.38: | Autumn migration (construction and decommissioning) | е | | | 1 3 3 (1 | | | Table 1.3 | 39: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase) | |--------------|---| | Table 1.4 | 40: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Autumn migration (operation and maintenance phase) | | Table 1.4 | 11: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during the Spring migration (construction and decommissioning). All entries are zero | | Table 1.4 | 12: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during the Autumn migration (construction and decommissioning). All entries are zero | | Table 1.4 | 13: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during non-breeding season (construction and decommissioning). All entries are zero | | Table 1.4 | 14: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during Spring
migration (operations and maintenance phase). All entries are zero | | Table 1.4 | 15: Mean predicted red-throated diver
mortality for the Mona Array Area plus 4 km buffer during Autumn migration (operations and maintenance phase). All entries are zero | | Table 1.4 | 46: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during non-breeding period (operations and maintenance phase). All entries are zero | | Table 1.4 | 17: Seasonal displacement estimates for the Mona Array Area plus 2 km buffer (or Mona Array Area plus 4 km buffer if appropriate for the species) during construction and decommissioning41 | | Table 1.4 | 18: Seasonal displacement estimates for the Mona Array Area plus 2 km buffer (or Mona Array Area plus 4 km buffer if appropriate for the species) during operation and maintenance | | Appei | ndices | | APPENI
A. | DIX A: BIRD DATA FOR DISPLACEMENT | | APPEND | DIX B : UPPER AND LOWER CONFIDENCE INTERVAL ABUNDANCE ESTIMATES56 | | В.
В. | | | | DIX C : UPPER AND LOWER CONFIDENCE INTERVAL MATRICES60 | | C. | | | C. | | | C. | ' | | C.
C. | | | C. | | | C. | | # **Glossary** | Term | Meaning | |--|--| | Season | Bird behaviour and abundance is recognised to differ across a calendar year, with particular months recognised as being part of different seasons. The biologically defined minimum population scale (BDMPS) seasons used in this report are based on those described in Furness (2015). Separate seasons are recognised in this technical report in order to establish the level of importance any seabird species has within the study area during any particular period of time. | | Disturbance sensitivity | Species disturbance sensitivity to wind farm structures, ship and helicopter traffic factors are compiled by Bradbury <i>et al.</i> (2014). They used scores from 1 (limited escape behaviour and a very short flight distance when approached) to 5 (strong escape behaviour at a large response distance). | | Habitat specialisation | The habitat specialisation factor represents the range of habitats species are able to use and whether they use these as specialists or generalists. Species habitat specialisation scores used in this Technical Report have been compiled by Bradbury <i>et al.</i> (2014). This score classifies species into categories from 1 (tend to forage over large marine areas with little known association with particular marine features) to 5 (tend to feed on very specific habitat features, such as shallow banks with bivalve communities, or kelp beds). | | Ornithology | Ornithology is a branch of zoology that concerns the study of birds. | | Significant effect | The significance of an effect is determined by considering the overall importance of the receptor and the magnitude of the effect using a matrix-based approach. | | Statutory Nature Conservation Bodies (SNCBs) | Comprised of Joint Nature Conservation Committee, Natural Resources Wales, Department of Agriculture, Environment and Rural Affairs/Northern Ireland Environment Agency, Natural England and Scottish Natural Heritage, these agencies provide advice in relation to nature conservation to the government. | # **Acronyms** | Term | Meaning | |---------|--| | BDMPS | Biologically Defined Minimum Population Scale | | ВТО | British Trust for Ornithology | | EWG | Expert Working Group | | LCI/UCI | Lower/Upper Confidence Interval | | MRSea | Marine Renewables Strategic environmental assessment | | SMP | Seabird Monitoring Programme | | SNCB | Statutory Nature Conservation Body | | SPA | Special Protection Area | | VORs | Valued Ornithological Receptors | Document Reference: F6.5.2 F02 # **Units** | Unit | Description | |------|--------------------| | % | Percent | | km | Kilometres | | km² | Kilometres squared | . # 1 Offshore ornithology displacement technical report #### 1.1 Introduction # 1.1.1 Background - 1.1.1.1 Seabirds can be impacted by offshore wind farm developments in a number of ways, including collision, displacement, barrier effects and disturbance, as well as indirect impacts such as changes to prey availability. - 1.1.1.2 Disturbance can exist when a bird's normal pattern of activity is interrupted by anthropogenic activity (i.e. vessel movements and increase noise from construction activities). Birds using a given area of sea for feeding, resting and/or commuting may therefore be disturbed by these activities in or near those areas. As the result of disturbance, displaced seabirds may move to areas already occupied by other seabirds and thus face higher intra/inter-specific competition due to a higher density of individuals competing for the same resource. Alternatively, displaced seabirds may be forced to move into areas of lower quality (e.g. areas of lower prey availability). Such disturbance and resulting avoidance could ultimately affect their demographic fitness (i.e. survival rates and breeding productivity) as well as potentially impacting on other birds in areas that displaced birds move to. Disturbance is typically considered a temporary effect, with impacts reducing once the activity causing disturbance stops. - 1.1.1.3 Furness *et al.* (2013) defines displacement as 'a reduced number of birds occurring within or immediately adjacent to an offshore wind farm' due to the presence of turbines. Displacement, as an effect, may occur both in the area of the disturbance or development and to some distance beyond it, which is known as a 'buffer' (e.g. Mendel et al. 2014). Displacement is considered to be a permanent effect, with birds facing adverse effects due to the removal of feeding areas, resulting in birds having to travel to more distant areas of sea for feeding and/or resting opportunities. - 1.1.1.4 Species differ greatly in their susceptibility to disturbance and displacement. Species sensitivity to disturbance in response to offshore wind farms has been quantified by Garthe and Hüppop (2004), Furness et al. (2013), Bradbury et al. (2014) and Wade et al. (2016). In a review of studies from 20 operational offshore wind farms in Europe, Dierschke et al. (2016) assessed the extent of displacement or attraction of a number of seabird species. Whilst diver species and northern gannet Morus bassanus showed consistent and strong avoidance behaviour of operational wind farms, northern fulmar Fulmarus glacialis, common scoter Melanitta nigra, Manx shearwater Puffinus puffinus, razorbill Alca torda, common guillemot Uria aalge, little gull Larus minutus and sandwich tern Thalasseus sandvicensis showed less consistent displacement. - 1.1.1.5 The Statutory Nature Conservation Bodies (SNCBs) have produced guidelines to assess seabird displacement associated with offshore wind farms (JNCC *et al.*, 2022). The guidelines promote the use of a displacement matrix approach (i.e. representing proportions of seabirds potentially displaced/dying as a result of offshore wind farm development). The SNCB note (JNCC *et al.*, 2022) details that the effects from disturbance and displacement is expected to be spatially limited to the offshore wind farm footprint and close proximity (birds are impacted by displacement up to 2 km from the wind farm footprint for most species, with displacement up to 4 km considered for divers and seaducks (and in some cases up to 10 km) due to being the most sensitive species groups to disturbance from sound, boat and helicopter traffic). 1.1.1.6 The displacement assessment for the Mona Offshore Wind Project makes use of the SNCB Matrix table approach, which was agreed during consultation with the Offshore Ornithology Expert Working Group (EWG) on 13 July 2022 as part of the Evidence Plan process (Evidence Plan sent to stakeholders on 26 May 2022, responses received on 24 June 2022 from Natural England and JNCC, and 7 July from Natural Resource Wales). # 1.1.2 Aim of report 1.1.2.1 This report presents the method and results of the SNCB Matrix table approach to seabird displacement assessment resulting from the Mona Offshore Wind Project during the construction, operations and maintenance and decommissioning phases. The report considers the most abundant seabird species recorded during the digital aerial surveys carried out between March 2020 and February 2022 to characterise the baseline for the assessment. The full methods and results of the digital aerial surveys are presented in Volume 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). ## 1.2 Consultation 1.2.1.1 A summary of the key issues raised during consultation activities undertaken to date specific to offshore ornithology is presented in Table 1.1 below, together with how these issues have been considered in the production of this technical report as part of the Environmental Statement. # 1.2.2 Evidence Plan process - 1.2.2.1 The purpose of the Evidence Plan process is to agree the information the Mona Offshore Wind Project needs to supply to the Secretary of State, as part of a DCO application for the Mona Offshore Wind Project. The Evidence Plan seeks to ensure compliance with EIA. The development and monitoring of the Evidence Plan and its subsequent progress is being undertaken by the Steering Group. The Steering Group will comprise of the Planning Inspectorate, the Applicant, NRW, Natural England, JNCC and the MMO as the key regulatory and SNCBs. To inform the EIA process during the pre-application
stage of the Mona Offshore Wind Project, Expert Working Groups (EWGs) were also set up to discuss and agree topic specific issues with the relevant stakeholders. Consultation was undertaken via the Offshore Ornithology EWG, with meetings held in February 2022, July 2022, November 2022, February 2023, June 2023, October 2023 and December 2023. - 1.2.2.2 The responses provided and changes suggested by the stakeholders through the EWG are summarized in Table 1.1 together with changes implemented in the technical report of the Environmental Statement. - 1.2.2.3 A number of comments were received during the S42 consultation following submission of the PEIR chapter. All the responses provided, and changes suggested by the stakeholders are presented in the consultation report (Document reference E.3) together with changes implemented in the technical reports underpinning the Environmental Statement. - 1.2.2.4 A summary of the key responses with changes implemented in the technical report of the Environmental Statement are presented in Table 1.1. Table 1.1: Summary of key topics and issues raised during consultation activities undertaken for the Mona Offshore Wind Project relevant to offshore ornithology displacement technical report of the Environmental Statement. | Date | Consultee and type of response | Topics and issues raised | Response to issue raised and/or where considered in this chapter | |-----------|---|---|---| | June 2022 | Scoping Opinion JNCC | Displacement and barrier effects to seabirds occurring during O&M should also be assumed to occur during both construction and decommissioning. Table 4.19 indicates that displacement will be considered during construction and decommissioning phases, but not barrier effects. In the absence of evidence to the contrary, then an assumption of a mean annual mortality of 50% of that assessed during O&M should be applied to the construction and decommissioning phases. | Displacement assessment was carried out for the construction, operations and maintenance, and decommissioning phases assuming that 50% of the annual displacement impact resulting from the operations and maintenance phase will occur during construction and decommissioning phases. Approach and results are presented in sections 1.3 and 1.4. | | July 2022 | Offshore Ornithology Expert Working Group 2: Attended by: Natural England, JNCC, NRW, RSPB, TWT | Agreed on the approach to displacement as set out in the Mona Displacement technical paper, taking into account clarifications to be provided by SNCBs. | It was agreed that kittiwake would be included in displacement along with the combined estimate of birds on the water and in flight for Manx shearwater. | | June 2023 | S42 Consultation
NRW, JNCC | NRW recommend that a worked example of the approach for a species assessed by MRSea for collision (for example kittiwake) and for a species assessed for displacement (for example guillemot) be included, that details how unidentified birds and availability bias have been corrected for and how estimates of birds in flight have been made from all birds estimates. | Methodology has been further clarified in response to S42 consultation and therefore the requirement for a worked example is no longer necessary. | | | | NRW do not recommend that displacement is assessed for kittiwake as we currently consider the evidence base to be insufficient hence we have not provided advice/comment on this. | Although black-legged kittiwake are considered to have low sensitivity to displacement, this species has been considered following an agreement through the Evidence Plan Process and at the recommendation of JNCC. | Document Reference: F6.5.2 F02 | Date | Consultee and type of response | Topics and issues raised | Response to issue raised and/or where considered in this chapter | |------|--------------------------------|--|---| | | | NRW seek clarification as to whether the monthly abundance estimates presented in Tables A.122-A.128 of Annex 5.2 are actually a mix of design-based and model-based (MRSea) estimates or whether all are model-based (MRSea) or all design-based. | Monthly species abundances are a mix of MRSea and design-based abundances, with MRSea estimates used in instead of design-based estimates wherever possible. Further explanations are provided in section 1.3. | | | | NRW states that it appears that for the species where MRSea estimates have been generated for some of the surveys, the quantitative impact assessments (for example of displacement and collision risk) have been based on a mix of MRSea estimates for months where these are available and design-based estimates where MRSea estimates are not available. NRW advise that whilst this approach seems sensible and uses the best available data, this hierarchy of approach needs to be clearly stated in the documents. | Monthly species abundances are a mix of MRSea and design-based abundances, with MRSea estimates used instead of design-based estimates wherever possible. Further explanations are provided in section 1.3. | | | | NRW advise that the guillemot seasonal abundances included for Mona in Table 10.73 are double-checked, as they are not consistent with the seasonal abundances presented in Volume 6, Annex 5.2: Offshore ornithology displacement technical report of the Environmental Statement (Document reference F6.5.2), Table 1.15 Common guillemot bio-season displacement estimates for the Mona Array Area plus 2km buffer during the operations and maintenance phase. | Common guillemot seasonal abundances have been checked in Volume 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1) and in this technical report. | | | | JNCC seek clarification as to which method(s) have been used to generate the monthly abundance estimates presented in Tables A.122-A.128 of Volume 6 Chapter 5.2 (Document reference F6.5.2). | Monthly species abundances are a mix of MRSea and design-based abundances, with MRSea estimates used in place of design-based estimates wherever possible. Further explanations are provided in section 1.3. | Document Reference: F6.5.2 F02 ## 1.3 Methodology - 1.3.1.1 As sensitivity to displacement differs considerably between seabird species, species were screened and progressed for the Matrix table approach using 'Disturbance Sensitivity' and 'Habitat Specialization' scores from Bradbury *et al.* (2014) (expanded from Furness *et al.*, 2013) as recommended by the Joint SNCB Interim Displacement Advice Note (JNCC *et al.*, 2022) (the SCNB Note). As recommended by the SNCB Note (JNCC *et al.*, 2022), the assessment is based on the mean seasonal peak number of seabirds (average of the highest seasonal value in the two years of survey) in the Mona Array Area with the appropriate buffer zone. - 1.3.1.2 Displacement matrices were populated based on the displacement and mortality values recommended by the SNCB Note (JNCC *et al.*, 2022) and the displaced population was assessed against the relevant regional population for each season. # 1.3.2 Screening species for displacement assessment - 1.3.2.1 A review of all species of seabirds recorded during the two years of Digital Aerial Surveys (DAS) undertaken at the Mona Offshore Ornithology Array Area study area was conducted to identify Valued Ornithological Receptors (VORs) for displacement analysis based on their abundance in surveys and vulnerability to impacts. A further step refined this list of VORs based on whether they are features of nearby designated sites in order to identify species of importance. - 1.3.2.2 To inform the identification of VORs the following criteria are defined for each species: - Known to be vulnerable to displacement impacts (based on Bradbury *et al.*, 2014 and Wade *et al.*, 2016). - Where the population of the species observed is considered to be of importance (i.e. high abundance recorded within the Mona Array Area plus 2 km (or 4 km buffer if appropriate for the species)). - Low = <100 birds in all individual surveys - Moderate = 100 to 500 birds in at least one survey - High = > 500 birds in at least one survey. - Are a feature of a designated site(s) within that species mean-max foraging range (as shown in Volume 6, Annex 5.1: Offshore Ornithology Baseline Characterisation Technical
Report of the Environmental Statement (Document reference F6.5.1)). - 1.3.2.3 VORs were identified and progressed to the displacement matrix table stage when the vulnerability of a species was moderate or high and the population importance of a species was also moderate or high. Species identified and taken forward to the collision risk assessment have been highlighted within Table 1.1 below. - 1.3.2.4 Species such as Manx shearwater and black-legged kittiwake are considered to have low sensitivity to displacement however at the request of JNCC as part of the Offshore Ornithology EWG (EWG meeting 2, 13 July 2022), displacement for these species has been considered. Red-throated diver were also included within the assessment despite their low presence at the request of the EWG (EWG meeting 3, 30 November 2022). Table 1.2: Displacement screening based on species abundance within the Mona Array Area plus a 2km to 4km buffer during the site-specific surveys, displacement vulnerability, and connectivity to designated site. 1. Cells highlighted indicate species in yellow has been screened in. | Species | Observed within the Mona Array Area plus 2 km buffer (or 4 km buffer if appropriate for the species) | Population importance | Vulnerability to displacement impacts | Designated site qualifying feature (within range of the Mona Array Area) | Displacement analysis required (Yes/No) | |--|--|-----------------------|---------------------------------------|--|---| | European shag
Phalacrocorax aristotelis | No | Low | Moderate | Yes | No - species absent from the Mona
Array Area plus 2 km buffer | | Great cormorant Phalacrocorax carbo | Yes - peak average abundance of 6 birds. | Low | High | Yes | No - species recorded in low
population numbers in the Mona
Array Area plus 2 km buffer | | Red-throated diver Gavia stellata | No | Low | High | Yes | Yes –assessment carried out following JNCC request to include species in displacement assessment (Second EWG meeting on 13 July 2022). | | Common guillemot | Yes - peak average abundance of 5,739 birds. | High | Moderate | Yes | Yes - species recorded in high
numbers in the Mona Array Area plus
2 km buffer, species has a moderate
level of vulnerability to displacement,
species is a qualifying feature of
nearby designated sites. | | Razorbill | Yes - peak average abundance of 2,305 birds. | High | Moderate | Yes | Yes - species recorded in high
numbers in the Mona Array Area plus
2 km buffer, species has a moderate
level of vulnerability to displacement,
species is a qualifying feature of
nearby designated sites. | | Species | Observed within the Mona Array Area plus 2 km buffer (or 4 km buffer if appropriate for the species) | Population
importance | Vulnerability to displacement impacts | Designated site
qualifying feature
(within range of
the Mona Array
Area) | Displacement analysis required (Yes/No) | |--|--|--------------------------|---------------------------------------|--|---| | Atlantic puffin Fratercula arctica | Yes - peak average abundance of 44 birds. | Low | Moderate | Yes | Yes - species has a moderate level of vulnerability to displacement, species is a qualifying feature of nearby designated sites. | | Northern fulmar | Yes - peak average abundance of 149 birds. | Moderate | Very Low | Yes | No - species has a very low vulnerability to displacement | | Manx shearwater | Yes - peak average abundance of 2,173 birds. | High | Very Low | Yes | Yes - assessment carried out following EWG request | | Northern gannet | Yes - peak average abundance of 293 birds. | Moderate | Low | Yes | Yes - species recorded in moderate numbers in the Mona Array Area plus 2 km buffer, species is a qualifying feature of nearby designated sites. | | Black-legged kittiwake
Rissa tridactyla | Yes - peak average abundance of 907 birds. | High | Low | Yes | Yes - assessment carried out following JNCC request | | Herring gull <i>Larus</i> argentatus | Yes - peak average abundance of 68 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | | Lesser black-backed gull
Larus fuscus | Yes - peak average abundance of 27 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | | Great black-backed gull
Larus marinus | Yes - peak average abundance of 174 birds. | Moderate | Low | Yes | No - species has a low vulnerability to displacement | | Black-headed gull
Chroicocephalus
ridibundus | Yes - peak average abundance of 7 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | Document Reference: F6.5.2 F02 | Species | Observed within the Mona Array Area plus 2 km buffer (or 4 km buffer if appropriate for the species) | Population importance | Vulnerability to displacement impacts | Designated site
qualifying feature
(within range of
the Mona Array
Area) | Displacement analysis required (Yes/No) | |--------------------------------------|--|-----------------------|---------------------------------------|--|---| | Common gull <i>Larus</i> canus | Yes - peak average abundance of 20 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | | Little gull | Yes - peak average abundance of 14 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | | Great skua Stercorarius skua | Yes - peak average abundance of 7 birds. | Low | Very Low | No | No - species has a very low vulnerability to displacement | | Arctic skua Stercorarius parasiticus | Yes - peak average abundance of 11 birds. | Low | Very Low | No | No - species has a very low vulnerability to displacement | | Common tern Sterna hirundo | Yes - peak average abundance of 7 birds. | Low | Low | Yes | No - species has a low vulnerability to displacement | | Sandwich tern | Yes - peak average abundance of 15 birds. | Low | Moderate | Yes | No - species has a low vulnerability to displacement | | Arctic tern Sterna paradisaea | No | Low | Low | No | No - species has a low vulnerability to displacement | ## 1.3.3 Seasonality - 1.3.3.1 Seasons used within the displacement assessment were defined according to the breeding, non-breeding and migratory periods (autumn and spring migration) based on Furness (2015) (Table 1.3) and as per Offshore Ornithology EWG advice (based on the second EWG meeting and Evidence Plan sent to Statutory Nature Conservation Bodies (SNCBs) on 27 May 2022, advice received on 24 June from Natural England and JNCC, and on 7 July 2022 from NRW). - 1.3.3.2 If a month fell within two seasons (e.g., March for gannet is included in both the prebreeding and breeding seasons in Furness (2015)), priority was given to the breeding season. In cases where a peak abundance was estimated during a month spanning two seasons, such as 100 birds observed in March for northern gannets, the peak of 100 birds was attributed to the breeding period. This approach was applied based on advice from JNCC during EWG meeting 2 (held on 13 July 2022), which discouraged the use of the migration-free breeding period in the displacement assessments. Consequently, some months were present in more than one season. To avoid underestimating the impact during the breeding season therefore, a precautionary approach was taken to prioritizing it due to the significant importance of this time and any potential impacts during this period having a profound impact on the regional population. If two months fell across two periods (e.g. March and April for kittiwake overlapping the pre-breeding and breeding season) then the first month was assigned to the pre-breeding and the second assigned to the breeding. This approach was taken as birds are still undergoing migration in March (Furness, 2015) and would likely overestimate impacts if all birds were considered to be breeding during the migration Table 1.3: Seasonal definitions as the basis for assessment, from Furness (2015). | Species | Pre-breeding season/spring migration | Breeding
season | Post breeding season/autumn migration | Non-
breeding/winter
season | |---------------------------|--------------------------------------|-----------------------|---------------------------------------|-----------------------------------| | Common guillemot | N/A | March to July | N/A | August to February | | Razorbill | January to March | April to July | August to October | November to December | | Atlantic puffin | N/A | April to August | N/A | September to March | | Northern gannet | December to February | March to September | October to November | N/A | | Black-legged
kittiwake | January to
March February | April March to August | September to
December | N/A | | Manx shearwater | March | April to August | September to October | N/A | | Red-throated diver | February to April | May to August | September to
November | December to January | # 1.3.4 Buffers for displacement 1.3.4.1
For the purpose of the displacement assessment, the monthly abundance of seabirds within the Mona Array Area, the Mona Array Area plus 2 km buffer and, if appropriate for the species, the Mona Array plus 4 km buffer, including upper and lower 95% confidence limits, were generated from the data collected through the programme of digital aerial surveys carried out in the Mona Offshore Ornithology Array Area study area (Figure 1.1). The Mona Array Area plus 2 km buffer covers 449.59 km², and the Mona Array Area plus 4 km buffer covers 622.46 km². Figure 1.1: The Mona Offshore Ornithology Array Area study area, Mona Array Area plus associated buffers for displacement and the Mona Offshore Ornithology Offshore Cable Corridor #### 1.3.5 Abundance estimates - 1.3.5.1 Density/population estimates were generated from the site specific digital aerial surveys carried out in the Mona Offshore Ornithology Array Area study area, which extended up to 16.5 km outside the Mona Array Area. Full details of the digital aerial survey methods and results are presented in Volume 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). - 1.3.5.2 Model-based estimates using the Marine Renewables Strategic environmental assessment (MRSea) package were produced in order to predict numbers across the digital aerial survey area alongside 95% confidence intervals to provide a level of uncertainty. Design-based estimates for bird numbers and densities in each month were also generated and compared to the MRSea estimates to provide additional validation of the MRSea outputs and to provide estimates for months where low raw abundances prevented the use of the MRSea model. Monthly species abundances are therefore a mix of MRSea and design-based abundances, with MRSea estimates used in lieu of design-based estimates wherever possible. For example, MRSea was only able to run for razorbill for the months of March 2020, July 2020, September 2020, December 2020 to April 2021 and December 2021 to February 2022, and so MRSea estimates are used for those months, with design-based estimates only used for April 2020 to June 2020, August 2020, October 2020 to November 2020 and May 2021 to November 2021. The only species that had MRSea estimates used for all months was common guillemot as there were sufficient observations recorded during digital aerial surveys for MRSea models to run. - 1.3.5.3 The primary data that informs the basis for the assessment of displacement effects are seasonal mean peak population estimates including seabirds both recorded on the surface (sitting) and in flight. Mean seasonal peak population estimates of each species were calculated using the defined seasons by Furness (2015) to provide the number of seabirds at risk of displacement impacts, including upper and lower 95% confidence intervals. Peak abundances in each season for each species considered within the displacement assessment are outlined in bold within Appendix A. - 1.3.5.4 As an example, the mean seasonal peak population calculation for common guillemot which breeds from March to July is presented. The average was taken of the peak count for the breeding season in Year 1 of the digital aerial surveys within the Mona Array Area plus 2 km buffer (which occurred in March) and the peak count in the breeding season of Year 2 (which occurred in April). - 1.3.5.5 In accordance with SNCB (2022), displacement was estimated as affecting seabirds present both in flight and sitting on the water (whether foraging or loafing), having accounted for availability bias (seabirds that may be underwater at the time of the survey). Therefore, abundance estimates of seabirds recorded in flight and sitting were combined to derive the mean seasonal peak population at risk of displacement. Where possible, data relating to age classes of each species is also reported, although the values used in the matrices will relate to all individuals. Mean seasonal peak abundances and how they were derived are presented in Table 1.4. For Lower Confidence Intervals (LCI) and Upper Confidence Intervals (UCI), see Appendix B. Table 1.4: Mean peak abundances for use in the assessment for each season. | | Pre-breeding | | Post breeding | Non-breeding/winter | |----------------------|-----------------------------|-----------------------------|-------------------------|---------------------| | Species | season/spring migration | Breeding season | season/autumn migration | season | | Common guillemot | | | | | | Peak Year 1 | N/A | 5,739 | N/A | 4,415 | | Peak Year 2 | N/A | 2,702 | N/A | 3,097 | | Mean peak | N/A | 4,220 | N/A | 3,756 | | Razorbill | | | <u> </u> | | | Peak Year 1 | 1,543 | 35 | 173 | 223 | | Peak Year 2 | 2,305 | 130 | 9 | 619 | | Mean peak | 1,924 | 83 | 91 | 421 | | Atlantic puffin | 1 | · | <u>'</u> | | | Peak Year 1 | N/A | 30 | N/A | 440 | | Peak Year 2 | N/A | 0 | N/A | 0 | | Mean peak | N/A | 15 | N/A | 220 | | Northern gannet | | • | | | | Peak Year 1 | 34 | 209 | 26 | N/A | | Peak Year 2 | 21 | 293 | 89 | N/A | | Mean peak | 28 | 251 | 58 | N/A | | Black-legged kittiwa | ake | • | <u>'</u> | | | Peak Year 1 | 907 - <u>287</u> | 264 - <u>548</u> | 242 | N/A | | Peak Year 2 | 861 | 445-907 | 879 | N/A | | Mean peak | 884 - <u>574</u> | 355 - <u>726</u> | 560 | N/A | Document Reference: F6.5.2 F02 | Species | Pre-breeding season/spring migration | Breeding season | Post breeding season/autumn migration | Non-breeding/winter season | |--------------------|--------------------------------------|-----------------|---------------------------------------|----------------------------| | Manx shearwater | | | | | | Peak Year 1 | <u>6</u> 0 | 324 | <u>2532</u> | N/A | | Peak Year 2 | 6 | 2,173 | 331 - <u>7</u> | N/A | | Mean peak | <u>6</u> 3 | 1,249 | 182 <u>16</u> | N/A | | Red-throated diver | | | | | | Peak Year 1 | 0 | N/A | 0 | 0 | | Peak Year 2 | 0 | N/A | 0 | 0 | | Mean peak | 0 | N/A | 0 | 0 | ## 1.3.6 Displacement parameters - 1.3.6.1 Table 1.5 presents the displacement and mortality ranges for the species considered in the displacement assessment. The most likely displacement and mortality rates during the operational period for common guillemot, razorbill and northern gannet have been obtained from the SNCB Note (JNCC *et al.* 2022). For auk species such as common guillemot, razorbill and Atlantic puffin the SNCBs advise a displacement level of 30 to 70%. Black-legged kittiwake rates have been taken from the relevant literature (Table 1.5). - 1.3.6.2 As Manx shearwater have a disturbance susceptibility score of one, the recommended rates of 1 to 10% for displacement and 1 to 10% mortality from the SNCB Note (JNCC et al. 2022) guidance were originally considered. However, the Offshore Ornithology EWG (meeting held 13 July 2022) advised that the 30% to 70% rates be applied (the same rates for auk species) instead. Table 1.5: Displacement and mortality rates for use in the assessment during the operations and maintenance phase. | Species | Displacement rates | Mortality rates | Source | |------------------------|--------------------|-----------------|---| | Common guillemot | 30 to 70% | 1 to 10% | SNCB Note (JNCC et al., 2022) | | Razorbill | 30 to 70% | 1 to 10% | SNCB (JNCC et al., 2022) | | Atlantic puffin | 30 to 70% | 1 to 10% | SNCB (JNCC et al., 2022) | | Northern gannet | 60 to 80% | 1 to 10% | Cook et al. (2018), Skov et al. (2018), Leopold et al. (2011) and Furness & Wade (2012) | | Black-legged kittiwake | 30 to 70% | 1 to 10% | Peschko et al. (2020); Vanermen et al. (2016);
Leopold et al. (2013) | | Manx shearwater | 30 to 70% | 1 to 10% | SNCBs (discussed at EWG meeting 2, 13 July 2022) | | Red-throated diver | 100% | 1 to 10% | SNCBs (discussed at EWG meeting 2, 13 July 2022) | - 1.3.6.3 Disturbance and subsequent displacement of seabirds during the construction phase can also occur due to vessel traffic and construction and piling activities occurring within the site. These activities may displace individuals that would normally reside within and around the Mona Array Area. - 1.3.6.4 As actual rates of displacement during the construction phase are difficult to determine, and as recommended by the SNCBs at the Offshore Ornithology EWG, the following methodology is proposed. Given that construction is limited both spatially and temporally and that any potential effects are unlikely to reach the same level as during the operation, the level to be used is half that of the operations and maintenance phase assessments. Table 1.6 shows the displacement and mortality rates used during the construction phase assessment. - 1.3.6.5 Decommissioning activities within the Mona Array Area are equal to or less than those carried out during the construction phase within the Mona Array Area. Therefore, for the purpose of this assessment it is assumed that the impacts are likely to be similar. Table 1.6: Displacement and mortality rates for use in the assessment during the construction and decommissioning phases. | Species | Displacement rates | Mortality rates | |------------------------|--------------------|-----------------| | Common guillemot | 15 to 35% | 1 to 10% | | Razorbill | 15 to 35% | 1 to 10% | | Atlantic puffin | 15 to 35% | 1 to 10% | | Northern gannet | 30 to 40% | 1 to 10% | | Black-legged kittiwake | 15 to 35% | 1 to 10% | | Manx shearwater | 15 to 35% | 1 to 10% | | Red-throated diver | 50% | 1 to 10% | - 1.3.6.6 Data on predicted mortality from displacement of seabirds from the Mona Array Area plus 2 km buffer (and where applicable 4 km buffer), are then presented in the form of a gridded Matrix table (for the mean value and lower and upper confidence intervals). Predicted mortalities are given for each season and each phase. The
mean seasonal peak value for the breeding, non-breeding and migratory periods are imputed into a displacement matrix to assess the potential level of impact. The matrix presents a wide range of potential displacement (10 to 100 %) and mortality rates (1 to 100 %), with the most likely displacement levels and mortality scenario cells highlighted in yellow and outlined in red. - 1.3.6.7 In addition, cells within each matrix in the following species-specific sections are shaded red to indicate where the displacement mortality would surpass the 1 % threshold of background mortality of the relevant regional or national population for each species. The relevant population against which displacement mortality is compared and the average background mortality for each species (Section 1.4) are presented in each Matrix table. #### 1.4 Results ## 1.4.1 Common guillemot #### **Construction and decommissioning phase** 1.4.1.1 Two seasons were defined for common guillemot in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.7 and Table 1.8 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.1. Table 1.7: Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Guille | | | (% of | Mortal
displace | ity level
d birds | | f mortali | ty) | | | | | | | |----------------------------|------|----|-------|--------------------|----------------------|-----|-----------|------|------|------|------|------|------|------| | Breed | ng | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 4 | 8 | 21 | 42 | 84 | 127 | 169 | 211 | 253 | 295 | 338 | 380 | 422 | | level | 15% | 6 | 13 | 32 | 63 | 127 | 190 | 253 | 317 | 380 | 443 | 506 | 570 | 633 | | | 20% | 8 | 17 | 42 | 84 | 169 | 253 | 338 | 422 | 506 | 591 | 675 | 760 | 844 | | ent | 25% | 11 | 21 | 53 | 106 | 211 | 317 | 422 | 528 | 633 | 739 | 844 | 950 | 1055 | | em
f di | 30% | 13 | 25 | 63 | 127 | 253 | 380 | 506 | 633 | 760 | 886 | 1013 | 1140 | 1266 | | Displacem
it risk of di | 35% | 15 | 30 | 74 | 148 | 295 | 443 | 591 | 739 | 886 | 1034 | 1182 | 1329 | 1477 | | ispla
risk | 40% | 17 | 34 | 84 | 169 | 338 | 506 | 675 | 844 | 1013 | 1182 | 1351 | 1519 | 1688 | | | 60% | 25 | 51 | 127 | 253 | 506 | 760 | 1013 | 1266 | 1519 | 1773 | 2026 | 2279 | 2532 | | %) | 80% | 34 | 68 | 169 | 338 | 675 | 1013 | 1351 | 1688 | 2026 | 2363 | 2701 | 3039 | 3376 | | | 100% | 42 | 84 | 211 | 422 | 844 | 1266 | 1688 | 2110 | 2532 | 2954 | 3376 | 3798 | 4220 | Table 1.8: Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Guille | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | | | | |---|---------|---|----|-----|-----|-----|------|------|------|------|------|------|------|------| | | reeding | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 4 | 8 | 19 | 38 | 75 | 113 | 150 | 188 | 225 | 263 | 300 | 338 | 376 | | level | 15% | 6 | 11 | 28 | 56 | 113 | 169 | 225 | 282 | 338 | 394 | 451 | 507 | 563 | | • | 20% | 8 | 15 | 38 | 75 | 150 | 225 | 300 | 376 | 451 | 526 | 601 | 676 | 751 | | ent
spl | 25% | 9 | 19 | 47 | 94 | 188 | 282 | 376 | 469 | 563 | 657 | 751 | 845 | 939 | | e
G | 30% | 11 | 23 | 56 | 113 | 225 | 338 | 451 | 563 | 676 | 789 | 901 | 1014 | 1127 | | Displacement
it risk of displ | 35% | 13 | 26 | 66 | 131 | 263 | 394 | 526 | 657 | 789 | 920 | 1052 | 1183 | 1315 | | ispla
risk | 40% | 15 | 30 | 75 | 150 | 300 | 451 | 601 | 751 | 901 | 1052 | 1202 | 1352 | 1502 | | at D | 60% | 23 | 45 | 113 | 225 | 451 | 676 | 901 | 1127 | 1352 | 1577 | 1803 | 2028 | 2254 | | %) | 80% | 30 | 60 | 150 | 300 | 601 | 901 | 1202 | 1502 | 1803 | 2103 | 2404 | 2704 | 3005 | | | 100% | 38 | 75 | 188 | 376 | 751 | 1127 | 1502 | 1878 | 2254 | 2629 | 3005 | 3380 | 3756 | ## **Operation and maintenance phase** 1.4.1.2 Two seasons were defined for common guillemot in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.9 and Table 1.10 for the operation and maintenance phase. Upper and lower matrices are presented in Appendix C.1. Table 1.9: Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Guillen
Breedi | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | | | | | |---------------------------|------|---|----|-----|-----|-----|------|------|------|------|------|------|------|------|--| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | ent) | 10% | 4 | 8 | 21 | 42 | 84 | 127 | 169 | 211 | 253 | 295 | 338 | 380 | 422 | | | level | 20% | 8 | 17 | 42 | 84 | 169 | 253 | 338 | 422 | 506 | 591 | 675 | 760 | 844 | | | | 30% | 13 | 25 | 63 | 127 | 253 | 380 | 506 | 633 | 760 | 886 | 1013 | 1140 | 1266 | | | ent
ispl | 40% | 17 | 34 | 84 | 169 | 338 | 506 | 675 | 844 | 1013 | 1182 | 1351 | 1519 | 1688 | | | em
f di | 50% | 21 | 42 | 106 | 211 | 422 | 633 | 844 | 1055 | 1266 | 1477 | 1688 | 1899 | 2110 | | | ace
k of | 60% | 25 | 51 | 127 | 253 | 506 | 760 | 1013 | 1266 | 1519 | 1773 | 2026 | 2279 | 2532 | | | Displacem
t risk of di | 70% | 30 | 59 | 148 | 295 | 591 | 886 | 1182 | 1477 | 1773 | 2068 | 2363 | 2659 | 2954 | | | at D | 80% | 34 | 68 | 169 | 338 | 675 | 1013 | 1351 | 1688 | 2026 | 2363 | 2701 | 3039 | 3376 | | | %) | 90% | 38 | 76 | 190 | 380 | 760 | 1140 | 1519 | 1899 | 2279 | 2659 | 3039 | 3419 | 3798 | | | | 100% | 42 | 84 | 211 | 422 | 844 | 1266 | 1688 | 2110 | 2532 | 2954 | 3376 | 3798 | 4220 | | Table 1.10: Mean predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase). | Guiller | not | | | | | (% of di | Mo
splaced | ortality l | | mortalit | v) | | | | |----------------------------|---------|----|----|-----|-----|------------|---------------|------------|------------|----------|------|------|------|------| | Non-bi | reeding | | | | | (/0 OI UI | Spiaceu | Dilus a | i i isk oi | mortant | y j | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 4 | 8 | 19 | 38 | 75 | 113 | 150 | 188 | 225 | 263 | 300 | 338 | 376 | | level | 20% | 8 | 15 | 38 | 75 | 150 | 225 | 300 | 376 | 451 | 526 | 601 | 676 | 751 | | | 30% | 11 | 23 | 56 | 113 | 225 | 338 | 451 | 563 | 676 | 789 | 901 | 1014 | 1127 | | ment
displa | 40% | 15 | 30 | 75 | 150 | 300 | 451 | 601 | 751 | 901 | 1052 | 1202 | 1352 | 1502 | | em
di | 50% | 19 | 38 | 94 | 188 | 376 | 563 | 751 | 939 | 1127 | 1315 | 1502 | 1690 | 1878 | | ace
c of | 60% | 23 | 45 | 113 | 225 | 451 | 676 | 901 | 1127 | 1352 | 1577 | 1803 | 2028 | 2254 | | Displacem
It risk of di | 70% | 26 | 53 | 131 | 263 | 526 | 789 | 1052 | 1315 | 1577 | 1840 | 2103 | 2366 | 2629 | | at Di | 80% | 30 | 60 | 150 | 300 | 601 | 901 | 1202 | 1502 | 1803 | 2103 | 2404 | 2704 | 3005 | | %) | 90% | 34 | 68 | 169 | 338 | 676 | 1014 | 1352 | 1690 | 2028 | 2366 | 2704 | 3042 | 3380 | | | 100% | 38 | 75 | 188 | 376 | 751 | 1127 | 1502 | 1878 | 2254 | 2629 | 3005 | 3380 | 3756 | ## 1.4.2 Razorbill ## Construction and decommissioning phases 1.4.2.1 Four seasons were defined for razorbill in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.11 to Table 1.14 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C. Table 1.11: Mean predicted razorbill mortality for the Mona Array plus 2 km buffer during Spring migration (construction and decommissioning). | Razork | | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | у) | | | | |----------------------------|-----------|----|----|----|-----|---------|-----|---------------------|--------------------|----------|------|------|------|------| | Spring | migration | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 2 | 4 | 10 | 19 | 38 | 58 | 77 | 96 | 115 | 135 | 154 | 173 | 192 | | level | 15% | 3 | 6 | 14 | 29 | 58 | 87 | 115 | 144 | 173 | 202 | 231 | 260 | 289 | | | 20% | 4 | 8 | 19 | 38 | 77 | 115 | 154 | 192 | 231 | 269 | 308 | 346 | 385 | | ment
displa | 25% | 5 | 10 | 24 | 48 | 96 | 144 | 192 | 241 | 289 | 337 | 385 | 433 | 481 | | em
f di | 30% | 6 | 12 | 29 | 58 | 115 | 173 | 231 | 289 | 346 | 404 | 462 | 520 | 577 | | Displacem
It risk of di | 35% | 7 | 13 | 34 | 67 | 135 | 202 | 269 | 337 | 404 | 471 | 539 | 606 | 673 | | ispla
risk | 40% | 8 | 15 | 38 | 77 | 154 | 231 | 308 | 385 | 462 | 539 | 616 | 693 | 770 | | at D | 60% | 12 | 23 | 58 | 115 | 231 | 346 | 462 | 577 | 693 | 808 | 924 | 1039 | 1155 | | %) | 80% | 15 | 31 | 77 | 154 | 308 | 462 | 616 | 770 | 924 | 1078 | 1232 | 1385 | 1539 | | | 100% | 19 | 38 | 96 | 192 | 385 | 577 | 770 | 962 | 1155 | 1347 | 1539 | 1732 | 1924 | Table 1.12: Mean predicted razorbill mortality for
the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Razorbil | I | | | | (0/- | of dien! | | lortality | level
k of mo | rtality) | | | | | |-----------------------------|------|----|----|----|------|----------|----------|-----------|------------------|----------|-----|-----|-----|------| | Breeding | 9 | | | | (/0 | oi dispi | aceu bii | us at 11s | ik of filo | tailty) | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | | ment level
displacement) | 15% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 | 12 | | <u>ace</u> | 20% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | ent | 25% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 17 | 19 | 21 | | | 30% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | | lace
k of | 35% | 0 | 1 | 1 | 3 | 6 | 9 | 12 | 14 | 17 | 20 | 23 | 26 | 29 | | isplarisk | 40% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 26 | 30 | 33 | | | 60% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | %) | 80% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | | 100% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 41 | 50 | 58 | 66 | 74 | 83 | Table 1.13: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Razorbill | | n | | | | (% of d | | lortality
I birds a | level
t risk of | mortalit | у) | | | | |-----------------------------|------|----|----|----|-----|----------------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | ment level
displacement) | 15% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 7 | 8 | 10 | 11 | 12 | 14 | | 1 <u>e</u> | 20% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | ent | 25% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 | 23 | | | 30% | 0 | 1 | 1 | 3 | 5 | 8 | 11 | 14 | 16 | 19 | 22 | 25 | 27 | | lace
k of | 35% | 0 | 1 | 2 | 3 | 6 | 10 | 13 | 16 | 19 | 22 | 25 | 29 | 32 | | isplarisk | 40% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | | 60% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 55 | | %) | 80% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 36 | 44 | 51 | 58 | 66 | 73 | | | 100% | 1 | 2 | 5 | 9 | 18 | 27 | 36 | 45 | 55 | 64 | 73 | 82 | 91 | Table 1.14: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Razori | oill | | | | | (% of d | | ortality
I birds a | level
t risk of | mortalit | :y) | | | | |---------------------------|------|----|----|----|-----|---------|-----|-----------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 4 | 8 | 13 | 17 | 21 | 25 | 29 | 34 | 38 | 42 | | level | 15% | 1 | 1 | 3 | 6 | 13 | 19 | 25 | 32 | 38 | 44 | 50 | 57 | 63 | | | 20% | 1 | 2 | 4 | 8 | 17 | 25 | 34 | 42 | 50 | 59 | 67 | 76 | 84 | | ent | 25% | 1 | 2 | 5 | 11 | 21 | 32 | 42 | 53 | 63 | 74 | 84 | 95 | 105 | | em
f di | 30% | 1 | 3 | 6 | 13 | 25 | 38 | 50 | 63 | 76 | 88 | 101 | 114 | 126 | | lace
k of | 35% | 1 | 3 | 7 | 15 | 29 | 44 | 59 | 74 | 88 | 103 | 118 | 133 | 147 | | Displacem
t risk of di | 40% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 118 | 135 | 151 | 168 | | at 🖂 | 60% | 3 | 5 | 13 | 25 | 50 | 76 | 101 | 126 | 151 | 177 | 202 | 227 | 252 | | %) | 80% | 3 | 7 | 17 | 34 | 67 | 101 | 135 | 168 | 202 | 236 | 269 | 303 | 337 | | | 100% | 4 | 8 | 21 | 42 | 84 | 126 | 168 | 210 | 252 | 295 | 337 | 379 | 421 | # **Operations and maintenance phase** 1.4.2.2 Four seasons were defined for razorbill in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.15 to Table 1.18 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C. Table 1.15: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | Razorb | ill | | | | | (% of d | | ortality
I birds a | level
t risk of | mortalit | y) | | | | |---------------------------|-----------|----|----|----|-----|---------|-----|-----------------------|--------------------|----------|------|------|------|------| | Spring | migration | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 2 | 4 | 10 | 19 | 38 | 58 | 77 | 96 | 115 | 135 | 154 | 173 | 192 | | level | 20% | 4 | 8 | 19 | 38 | 77 | 115 | 154 | 192 | 231 | 269 | 308 | 346 | 385 | | ace | 30% | 6 | 12 | 29 | 58 | 115 | 173 | 231 | 289 | 346 | 404 | 462 | 520 | 577 | | ment
displa | 40% | 8 | 15 | 38 | 77 | 154 | 231 | 308 | 385 | 462 | 539 | 616 | 693 | 770 | | em
f di | 50% | 10 | 19 | 48 | 96 | 192 | 289 | 385 | 481 | 577 | 673 | 770 | 866 | 962 | | Displacem
t risk of di | 60% | 12 | 23 | 58 | 115 | 231 | 346 | 462 | 577 | 693 | 808 | 924 | 1039 | 1155 | | ispla
risk | 70% | 13 | 27 | 67 | 135 | 269 | 404 | 539 | 673 | 808 | 943 | 1078 | 1212 | 1347 | | - O | 80% | 15 | 31 | 77 | 154 | 308 | 462 | 616 | 770 | 924 | 1078 | 1232 | 1385 | 1539 | | %) | 90% | 17 | 35 | 87 | 173 | 346 | 520 | 693 | 866 | 1039 | 1212 | 1385 | 1559 | 1732 | | | 100% | 19 | 38 | 96 | 192 | 385 | 577 | 770 | 962 | 1155 | 1347 | 1539 | 1732 | 1924 | Table 1.16: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Razorb
Breedin | | | | | | (% of d | | lortality
I birds a | level
t risk of | mortalit | у) | | | | |-------------------|------|----|----|----|-----|---------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | | level | 20% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | <u>ac</u> | 30% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | | ent | 40% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 26 | 30 | 33 | | ᅙᅼᇎᄀᆖᇎ | 50% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | | lace
k of | 60% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | ispla
risk | 70% | 1 | 1 | 3 | 6 | 12 | 17 | 23 | 29 | 35 | 40 | 46 | 52 | 58 | | at | 80% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | %) | 90% | 1 | 1 | 4 | 7 | 15 | 22 | 30 | 37 | 45 | 52 | 59 | 67 | 74 | | | 100% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 41 | 50 | 58 | 66 | 74 | 83 | Table 1.17: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Razorb
Autumn | | tion | | | | (% of d | | lortality
d birds a | level
t risk of | mortalit | (y) | | | | |------------------|------|------|----|----|-----|---------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | level | 20% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | | 30% | 0 | 1 | 1 | 3 | 5 | 8 | 11 | 14 | 16 | 19 | 22 | 25 | 27 | | ent | 40% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | | 50% | 0 | 1 | 2 | 5 | 9 | 14 | 18 | 23 | 27 | 32 | 36 | 41 | 45 | | lace
k of | 60% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 55 | | ispla
risk | 70% | 1 | 1 | 3 | 6 | 13 | 19 | 25 | 32 | 38 | 45 | 51 | 57 | 64 | | at D | 80% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 36 | 44 | 51 | 58 | 66 | 73 | | %) | 90% | 1 | 2 | 4 | 8 | 16 | 25 | 33 | 41 | 49 | 57 | 66 | 74 | 82 | | | 100% | 1 | 2 | 5 | 9 | 18 | 27 | 36 | 45 | 55 | 64 | 73 | 82 | 91 | Table 1.18: Mean predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase). | Razorb | | | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | ty) | | | | |---------------------------|------|----|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 4 | 8 | 13 | 17 | 21 | 25 | 29 | 34 | 38 | 42 | | | 20% | 1 | 2 | 4 | 8 | 17 | 25 | 34 | 42 | 50 | 59 | 67 | 76 | 84 | | | 30% | 1 | 3 | 6 | 13 | 25 | 38 | 50 | 63 | 76 | 88 | 101 | 114 | 126 | | ent | 40% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 118 | 135 | 151 | 168 | | em
f dj | 50% | 2 | 4 | 11 | 21 | 42 | 63 | 84 | 105 | 126 | 147 | 168 | 189 | 210 | | Displacem
t risk of di | 60% | 3 | 5 | 13 | 25 | 50 | 76 | 101 | 126 | 151 | 177 | 202 | 227 | 252 | | ispla
risk | 70% | 3 | 6 | 15 | 29 | 59 | 88 | 118 | 147 | 177 | 206 | 236 | 265 | 295 | | at 🖻 | 80% | 3 | 7 | 17 | 34 | 67 | 101 | 135 | 168 | 202 | 236 | 269 | 303 | 337 | | %) | 90% | 4 | 8 | 19 | 38 | 76 | 114 | 151 | 189 | 227 | 265 | 303 | 341 | 379 | | | 100% | 4 | 8 | 21 | 42 | 84 | 126 | 168 | 210 | 252 | 295 | 337 | 379 | 421 | # 1.4.3 Atlantic puffin # **Construction and decommissioning phases** 1.4.3.1 Two seasons were defined for puffin in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons,
using the mean-peak populations presented in Table 1.4 are presented in Table 1.19 and Table 1.20 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.3. Table 1.19: Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Puffin
Breedi | ina | | | | (% of c | displace | Mortal
d birds a | ity level
at risk o | f mortal | ity) | | | | | |----------------------------------|------|----|----|----|---------|----------|---------------------|------------------------|----------|------|-----|-----|-----|------| | | 9 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | ace | 20% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | | Displacement
It risk of displ | 25% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | | em
f di | 30% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | lace
k of | 35% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | | ispla
risk | 40% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | at 🗖 | 60% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | %) | 80% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | | | 100% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | Table 1.20: Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). All entries are zero. | | | enth | les are | 2010. | | | | | | | | | | | |--|--------|------|--------------------|------------------|-------|----------|----------|-----------|------------|---------|------|-----|-----|------| | uffin | | | | | | | M | ortality | level | | | | | | | | | | | | | (% of di | isplaced | l birds a | ıt risk of | mortali | ity) | | | | | lon-br | eeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ı. | 10% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | el
Tie | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | Displacement level
at risk of displacement) | 20% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | | spla | 25% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | | di | 30% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | | ace | 35% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | Displacement level
at risk of displacem | 40% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | | | 60% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | | %) | 80% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | 18 | | | 100% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | uffin | | | | | | | Morta | lity leve | | | | | | | | | | | | | (% of | displace | | | of morta | lity) | | | | | | lon-br | eeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | acem | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displ | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | d d | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | i k | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at risk of disp | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | o o | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 0 | lo | 0 | 0 | 0 | 0 | ## **Operations and maintenance phase** 1.4.3.2 Two seasons were defined for puffin in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.21 and Table 1.22 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C.3. Table 1.21: Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Puffin
Breedi | ng | | | | , | (% of di | | ortality l | evel
risk of | mortality | () | | | | |----------------------------------|------|----|----|----|-----|----------|-----|------------|-----------------|-----------|------------|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | | level | 20% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | | ace | 30% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | Displacement
It risk of displ | 40% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | em
f di | 50% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | splace
risk of | 60% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | sp
ris | 70% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | | σ | 80% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | | %) | 90% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 7 | 8 | 10 | 11 | 12 | 14 | | | 100% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | Table 1.22: Mean predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase).—All entries are zero. | Puffin | eeding | | | | (| % of dis | | ortality le | evel
risk of r | mortality |) | | | | |---------------------------|--------|----|----|----|-----|----------|-----|-------------|-------------------|-----------|-----|-----|-----|------| | • | eeding | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>او</u> | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ment
displ | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
t risk of di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Puffin Non-br | eeding | | | | | (% of di | | ortality
birds a | level
t risk of | mortali | ty) | | | | |----------------------------------|--------|----|----|----|-----|----------|-----|---------------------|--------------------|---------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | el
He | 20% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | | level | 30% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | | | 40% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | | ame
dis | 50% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | | ace
k of | 60% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 | 13 | | Displacement
at risk of displ | 70% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | | _ ,,, | 80% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | 18 | | %) | 90% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | | 100% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | ## 1.4.4 Northern gannet ## **Construction and decommissioning phases** 1.4.4.1 Three seasons were defined for gannet in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.23 to Table 1.25 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.4. Table 1.23: Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Ganne | et | | | | (% of | displace | | lity level
at risk c | f mortal | lity) | | | | | |----------------------------------|------------|----|----|----|-------|----------|-----|-------------------------|----------|-------|-----|-----|-----|------| | Spring | g migratio | on | | | | • | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | | ment level
displacement) | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | | <u> e </u> | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | | ent
spl | 25% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 | 7 | | em
di | 30% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | | ace
c of | 35% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Displacement
It risk of displ | 40% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | | at at | 60% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | %) | 80% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | | 100% | 0 | 1 | 1 | 3 | 6 | 8 | 11 | 14 | 17 | 19 | 22 | 25 | 28 | Table 1.24: Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Ganne
Breedi | | | |
 (% of | displace | | lity level
at risk c | l
of mortal | lity) | | | | | |-----------------|------|----|----|----|-------|----------|-----|-------------------------|----------------|-------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | level | 15% | 0 | 1 | 2 | 4 | 8 | 11 | 15 | 19 | 23 | 26 | 30 | 34 | 38 | | 10 | 20% | 1 | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | ent | 25% | 1 | 1 | 3 | 6 | 13 | 19 | 25 | 31 | 38 | 44 | 50 | 56 | 63 | | | 30% | 1 | 2 | 4 | 8 | 15 | 23 | 30 | 38 | 45 | 53 | 60 | 68 | 75 | | lace
k of | 35% | 1 | 2 | 4 | 9 | 18 | 26 | 35 | 44 | 53 | 61 | 70 | 79 | 88 | | ispla
risk | 40% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | | 60% | 2 | 3 | 8 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | | %) | 80% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | | | 100% | 3 | 5 | 13 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 226 | 251 | Table 1.25: Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | | Gannet Mortality level (% of displaced birds at risk of mortality) Autumn migration | | | | | | | | | | | | | | |---------------------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | | level | 15% | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 20% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | | ent
spl | 25% | 0 | 0 | 1 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 14 | | em
f di | 30% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 16 | 17 | | Displacem
t risk of di | 35% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | ispla
risk | 40% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 18 | 21 | 23 | | at D | 60% | 0 | 1 | 2 | 3 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | | %) | 80% | 0 | 1 | 2 | 5 | 9 | 14 | 18 | 23 | 28 | 32 | 37 | 41 | 46 | | | 100% | 1 | 1 | 3 | 6 | 12 | 17 | 23 | 29 | 35 | 40 | 46 | 52 | 58 | ## **Operations and maintenance phase** 1.4.4.2 Three seasons were defined for gannet in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.26 to Table 1.28 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C.4. Table 1.26: Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | Ganne | et | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |----------------------------------|-----------------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | Spring | pring migration | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | | level | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | | ace | 30% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | | ent
spl | 40% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 | 11 | | ğ.
G | 50% | 0 | 0 | 1 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | 11 | 12 | 14 | | Displacement
it risk of displ | 60% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | splarisk | 70% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 13 | 15 | 17 | 19 | | at D | 80% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | %) | 90% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | | | 100% | 0 | 1 | 1 | 3 | 6 | 8 | 11 | 14 | 17 | 19 | 22 | 25 | 28 | Table 1.27: Mean predicted northern gannet mortality for the Mona Array Area 2 km buffer during the breeding season (operations and maintenance phase). | Ganne
Breedi | | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |---------------------------|------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | level | 20% | 1 | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | ment level
displacem | 30% | 1 | 2 | 4 | 8 | 15 | 23 | 30 | 38 | 45 | 53 | 60 | 68 | 75 | | | 40% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | em
f di | 50% | 1 | 3 | 6 | 13 | 25 | 38 | 50 | 63 | 75 | 88 | 100 | 113 | 125 | | Displacem
t risk of di | 60% | 2 | 3 | 8 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | | ispla
risk | 70% | 2 | 4 | 9 | 18 | 35 | 53 | 70 | 88 | 105 | 123 | 140 | 158 | 175 | | at 🗖 | 80% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 200 | | %) | 90% | 2 | 5 | 11 | 23 | 45 | 68 | 90 | 113 | 135 | 158 | 180 | 203 | 226 | | | 100% | 3 | 5 | 13 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 226 | 251 | Table 1.28: Mean predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Gannet Mortality level (% of displaced birds at risk of mortality) Autumn migration | | | | | | | | | | | | | | | |---|------|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | | g at | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | | level | 20% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | | | 30% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 16 | 17 | | ent | 40% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 18 | 21 | 23 | | em
f di | 50% | 0 | 1 | 1 | 3 | 6 | 9 | 12 | 14 | 17 | 20 | 23 | 26 | 29 | | Displacem
t risk of di | 60% | 0 | 1 | 2 | 3 | 7 | 10 | 14 | 17 | 21 | 24 | 28 | 31 | 35 | | ispla
risk | 70% | 0 | 1 | 2 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | | | 80% | 0 | 1 | 2 | 5 | 9 | 14 | 18 | 23 | 28 | 32 | 37 | 41 | 46 | | %) | 90% | 1 | 1 | 3 | 5 | 10 | 16 | 21 | 26 | 31 | 36 | 41 | 47 | 52 | | | 100% | 1 | 1 | 3 | 6 | 12 | 17 | 23 | 29 | 35 | 40 | 46 | 52 | 58 | # 1.4.5 Black-legged kittiwake # Construction and decommissioning phases 1.4.5.1 Three seasons were defined for black-legged kittiwake in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.29 to Table 1.31 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.5. Table 1.29: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Kittiwa | ake | | | | | | | Morta | lity leve | I | | | | | |---------------------------------------|---|-------------------|------------------------|-----------------------------------|------------------------------------|-----------------------------|---|--|---|--|---|---|--|---| | | | | | | | (% | of displa | | ds at ris | | rtality) | | | | | Spring | g <mark>migrati</mark> e | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 1 | 2 | 4 | 9 | 18 | 27 | 35 | 44 | 53 | 62 | 71 | 80 | 88 | | level
acem | 15% | 1 | 3 | 7 | 13 | 27 | 40 | 53 | 66 | 80 | 93 | 106 | 119 | 133 | | | 20% | 2 | 4 | 9 | 18 | 35 | 53 | 71 | 88 | 106 | 124 | 141 | 159 | 177 | | isp | 25% | 2 | 4 | 11 | 22 | 44 | 66 | 88 | 110 | 133 | 155 | 177 | 199 | 221 | | em
of d | 30% | 3 | 5 | 13 | 27 | 53 | 80 | 106 | 133 | 159 | 186 | 212 | 239 | 265 | | Displacement
It risk of disp | 35% | 3 | 6 | 15 | 31 | 62 | 93 | 124 | 155 | 186 | 217 | 247 | 278 | 309 | | isp
ris | 40% | 4 | 7 | 18 | 35 | 71 | 106 | 141 | 177 | 212 | 247 | 283 | 318 | 354 | | · · · · · · · · · · · · · · · · · · · | 60% | 5 | 11 | 27 | 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 | 530 | | %) | 80% | 7 | 14 | 35 | 71 | 141 | 212 | 283 | 354 | 424 | 495 | 566 | 636 | 707 | | ی | | | | | 100 | 14-7-7 | 005 | 251 | 110 | 530 | 619 | 707 | 795 | 884 | | | 100% | 9 | 18 | 44 | 88 | 177 | 265 | 354 | 442 | | 1019 | 101 | 795 | 004 | | | 100%
-legged | | | 44 | 88 | 11// | <u> </u> 265 | | lity lev | | 1019 | 1707 | 195 | 004 | | | | | | <u> 44</u> | | 6 of dis | | Morta | lity lev | el | | 101 | 1795 | 004 | | Black | | kittiw | | <u> 44</u> | | | | Morta | lity lev | el | | 101 | 193 | 004 | | Black | -legged | kittiw | | 5% | | | | Morta | lity lev | el | | 80% | 90% | 100% | | Black | -legged | kittiw | ake | | (% | % of dis | placed | Morta
birds a | ılity leve
t risk o | el
f morta | lity) | | | | | Black
Pre-b | -legged
reeding
| kittiw
1% | ake
2% | 5% | (%
10% | % of dis | placed | Morta
birds a | lity leve
t risk o | el
f morta
60% | lity)
70% | 80% | 90% | 100% | | Black
Pre-b | reeding | kittiw
1% | 2%
1 | 5% 3 | 10% 6 | 6 of dis | 30% | Morta birds a | t risk o | 60% | 70% | 80% 46 | 90% 52 | 100% 57 | | Black
Pre-b | reeding
10%
15% | kittiw
1% | 2%
1
2 | 5% 3 4 | (%
10%
6
9 | 6 of dis 20% 11 17 | 30%
17
26 | Morta
birds a
40%
23
34 | 50%
29
43 | 60%
34
52 | 70% 40 60 | 80% 46 69 | 90% 52 77 | 100% 57 86 | | Black
Pre-b | reeding
10%
15%
20% | kittiw
1% | 2%
1
2 | 5% 3 4 6 | (%) 10% 6 9 11 | 20%
11
17
23 | 30%
17
26
34 | Morta birds a 40% 23 34 46 | 50%
29
43
57 | 60%
34
52
69 | 70%
40
60
80 | 80% 46 69 92 | 90% 52 77 103 | 100% 57 86 115 | | Black
Pre-b | 10%
15%
20%
25% | 1%
1
1
1 | 2%
1
2
2
3 | 5% 3 4 6 7 | 10%
6
9
11 | 20%
11
17
23
29 | 30%
17
26
34
43 | Morta birds a 40% 23 34 46 57 | 50%
29
43
57
72 | 60%
34
52
69
86 | 70%
40
60
80
100 | 80% 46 69 92 115 | 90%
52
77
103
129 | 100%
57
86
115
144 | | Black
Pre-b | 10%
15%
20%
25%
30% | 1% 1 1 1 2 | 2% 1 2 2 3 3 | 5%
3
4
6
7
9 | (%) 10% 6 9 11 14 17 | 20% 11 17 23 29 34 | 30%
17
26
34
43
52 | Morta birds a 40% 23 34 46 57 69 | 50%
29
43
57
72
86 | 60%
34
52
69
86
103 | 70%
40
60
80
100
121 | 80%
46
69
92
115
138 | 90%
52
77
103
129
155 | 100%
57
86
115
144
172 | | Black | 10%
15%
20%
25%
30%
35% | 1% 1 1 1 2 2 | 2% 1 2 2 3 3 4 | 5%
3
4
6
7
9 | 10%
6 9
11
14
17
20 | 20% 11 17 23 29 34 40 | 30%
17
26
34
43
52
60 | Morta birds a 40% 23 34 46 57 69 80 | 50%
29
43
57
72
86
100 | 60%
34
52
69
86
103
121 | 70%
40
60
80
100
121
141 | 80%
46
69
92
115
138
161 | 90%
52
77
103
129
155
181 | 100%
57
86
115
144
172
201 | | Black
Pre-b | 10%
15%
20%
25%
30%
35%
40% | 1% 1 1 1 2 2 2 | 2% 1 2 2 3 3 4 5 | 5%
3
4
6
7
9
10 | 10%
6 9 11 14 17 20 23 | 20% 11 17 23 29 34 40 46 | 30%
17
26
34
43
52
60
69 | Morta birds a 40% 23 34 46 57 69 80 92 | 50%
29
43
57
72
86
100
115 | 60%
34
52
69
86
103
121
138 | 70%
40
60
80
100
121
141
161 | 80%
46
69
92
115
138
161
184 | 90%
52
77
103
129
155
181
207 | 100%
57
86
115
144
172
201
230 | Table 1.30: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Kittiwa | ake | | | | | 101 | - 6 - 12 4 | | lity leve | | -1 - P4- A | | | | |--|---|----------------|---------------------------------------|------------------------------------|----------------------------|-----------------------------|---|--|-----------------------------|---|-------------------------------|--|--|--| | Breedi | ina | | | | | (% | of displa | aced bir | ds at ris | k of mo | rtality) | | | | | | 9 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 14 | 18 | 21 | 25 | 28 | 32 | 35 | | rel
≱m€ | 15% | 1 | 1 | 3 | 5 | 11 | 16 | 21 | 27 | 32 | 37 | 43 | 48 | 53 | | <u>ac e</u> | 20% | 1 | 1 | 4 | 7 | 14 | 21 | 28 | 35 | 43 | 50 | 57 | 64 | 71 | | ent | 25% | 1 | 2 | 4 | 9 | 18 | 27 | 35 | 44 | 53 | 62 | 71 | 80 | 89 | | Displacement level
at risk of displacem | 30% | 1 | 2 | 5 | 11 | 21 | 32 | 43 | 53 | 64 | 74 | 85 | 96 | 106 | | k o | 35% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 74 | 87 | 99 | 112 | 124 | | isp
ris | 40% | 1 | 3 | 7 | 14 | 28 | 43 | 57 | 71 | 85 | 99 | 114 | 128 | 142 | | O | 60% | 2 | 4 | 11 | 21 | 43 | 64 | 85 | 106 | 128 | 149 | 170 | 192 | 213 | | | 80% | 3 | 6 | 14 | 28 | 57 | 85 | 114 | 142 | 170 | 199 | 227 | 255 | 284 | | %) | | | | | | | | | 477 | 242 | 240 | 204 | 240 | OFF | | | 100%
-legged | 4
kittiw | 7
ake | 18 | 35 | 71 | 106 | | lity lev | | 248 | 284 | 319 | 355 | | Black | 100%
-legged | | | 18 | <u> </u> | | | Morta | | el | | Z84 | 319 | 355 | | Black | 100%
-legged | | | 18
5% | <u> </u> | | | Morta | lity lev | el | | 80% | 90% | | | Black | 100%
-legged | kittiw | ake | | (% | % of dis | placed | Morta
birds a | ılity leve
t risk o | el
f morta | lity) | | | | | Black
Breed | 100%
-legged
ling | kittiw | ake | 5% | (%
10% | % of dis | placed | Morta
birds a | lity leve
t risk o | el
f morta
60% | lity)
70% | 80% | 90% | 100% | | Black
Breed | 100%
-legged
ling
10% | kittiw | 2%
1 | 5% | 10% | 20% | 30% | Morta
birds a
40% | t risk o 50% | 60% | 70% | 80% 58 | 90% 65 | 100% 73 | | Black
Breed | 100%
-legged
ling
10%
15% | kittiw | 2%
1
2 | 5% 4 5 | (%
10%
7
11 | 6 of dis 20% 15 22 | 30%
22
33 | Morta birds a 40% 29 44 | 50%
36
54 | 60%
44
65 | 70% 51 76 | 80% 58 87 | 90% 65 98 | 100% 73 109 | | Black
Breed | 100% -legged ling 10% 15% 20% | 1% 1 1 1 | 2%
1
2
3 | 5% 4 5 7 | (% 10% 7 11 15 | 20%
15
22
29 | 30%
22
33
44 | Morta birds a 40% 29 44 58 | 50%
36
54
73 | 60%
44
65
87 | 70%
51
76
102 | 80% 58 87 116 | 90% 65 98 131 | 100%
73
109
145 | | Black
Breed | 100% -legged ling 10% 15% 20% 25% | 1% 1 1 1 2 | 2% 1 2 3 4 | 5% 4 5 7 9 | 10%
7
11
15
18 | 20%
15
22
29
36 | 30%
22
33
44
54 | Morta birds a 40% 29 44 58 73 | 50%
36
54
73
91 | 60%
44
65
87
109 | 70%
51
76
102
127 | 80%
58
87
116
145 | 90%
65
98
131
163 | 100%
73
109
145
182 | | Black
Breed | 100% -legged ling 10% 15% 20% 25% 30% | 1% 1 1 2 2 | 2%
1
2
3
4 | 5% 4 5 7 9 11 | 10% 7 11 15 18 22 | 20% 15 22 29 36 44 | 30% 22 33 44 54 65 | Morta birds a 40% 29 44 58 73 87 | 50% 36 54 73 91 109 | 60%
44
65
87
109
131 | 70% 51 76 102 127 152 | 80%
58
87
116
145
174 | 90%
65
98
131
163
196 | 100%
73
109
145
182
218 | | Black
Breed | 100% -legged ling 10% 15% 20% 25% 30% 35% | 1% 1 1 1 2 2 3 | 2% 1 2 3 4 4 5 | 5%
4
5
7
9
11 | 10% 7 11 15 18 22 25 | 20% 15 22 29 36 44 51 | 30% 22 33 44 54 65 76 | Morta birds a 40% 29 44 58 73 87 102 | 50% 36 54 73 91 109 127 | 60%
44
65
87
109
131
152 | 70% 51 76 102 127 152 178 | 80%
58
87
116
145
174
203 | 90%
65
98
131
163
196
229 | 100%
73
109
145
182
218
254 | | Black | 100% -legged ling 10% 15% 20% 25% 30% 35% 40% | 1% 1 1 2 2 3 3 | 2%
1
2
3
4
4
5
6 | 5%
4
5
7
9
11
13 | 10% 7 11 15 18 22 25 29 | 20% 15 22 29 36 44 51 58 | 30%
22
33
44
54
65
76
87 | Morta birds a 40% 29 44 58 73 87 102 116 | 50% 36 54 73 91 109 127 145 | 60%
44
65
87
109
131
152
174 | 70% 51 76 102 127 152 178 203 | 80%
58
87
116
145
174
203
232 | 90%
65
98
131
163
196
229
261 | 100%
73
109
145
182
218
254
290 | Table 1.31: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | | | | | <u> </u> | | | | • | | | | | | • | |---|----------|-----|----|----------|-----|-----|-----------|----------|------------|---------|----------|-----|-----|------| | Kittiwa | ike | | | | | | | Morta | ality leve | l | | | | | | | | | | | | (% | of displa | aced bir | ds at ris | k of mo | rtality) | | | | | Autum | n migrat | ion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 1 | 3 | 6 | 11 | 17 | 22 | 28 | 34 | 39 | 45 | 50 | 56 | | level | 15% | 1 | 2 | 4 | 8 | 17 | 25 | 34 | 42 | 50 | 59 | 67 | 76 | 84 | | • | 20% | 1 | 2 | 6 | 11 | 22 | 34 | 45 | 56 | 67 | 78 | 90 | 101 | 112 | | ent
spl | 25% | 1 | 3 | 7 | 14 | 28 | 42 | 56 | 70 | 84 | 98 | 112 | 126 | 140 | | | 30% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 118 | 134 | 151 | 168 | | ace
k of | 35% | 2 | 4 | 10 | 20 | 39 | 59 | 78 | 98 | 118 | 137 | 157 | 176 | 196 | | ispla
risk | 40% | 2 | 4 | 11 | 22 | 45 | 67 | 90 | 112 | 134 | 157 | 179 | 202 | 224 | | at D | 60% | 3 | 7 | 17 | 34 | 67 | 101 | 134 | 168 | 202 | 235 | 269 | 302 | 336 | | %) | 80% | 4 | 9 | 22 | 45 | 90 | 134 | 179 | 224 | 269 | 314 | 358 | 403 | 448 | | | 100% | 6 | 11 | 28 | 56 | 112 | 168 | 224 | 280 | 336 | 392 | 448 | 504 | 560 | ### **Operations and maintenance phase** 1.4.5.2 Three seasons were defined for black-legged kittiwake in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document
reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.32 to Table 1.34 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C.5. Table 1.32: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | Kittiwa | ake | | | | | /0/ -f-1 | | ortality | | | | | | | |----------------------------------|--|---------------------------|-------------------|---|--|--------------------------|---|--|---|--|--|--|---|--| | Spring | g migratio | on | | | | (% or a | ispiaced | i birds a | t risk of | mortalit | (y) | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 1 | 2 | 4 | 9 | 18 | 27 | 35 | 44 | 53 | 62 | 71 | 80 | 88 | | level | 20% | 2 | 4 | 9 | 18 | 35 | 53 | 71 | 88 | 106 | 124 | 141 | 159 | 177 | | | 30% | 3 | 5 | 13 | 27 | 53 | 80 | 106 | 133 | 159 | 186 | 212 | 239 | 265 | | Displacement
at risk of disp | 40% | 4 | 7 | 18 | 35 | 71 | 106 | 141 | 177 | 212 | 247 | 283 | 318 | 354 | | Displacement
it risk of displ | 50% | 4 | 9 | 22 | 44 | 88 | 133 | 177 | 221 | 265 | 309 | 354 | 398 | 442 | | x ac | 60% | 5 | 11 | 27 | 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 | 530 | | ris | 70% | 6 | 12 | 31 | 62 | 124 | 186 | 247 | 309 | 371 | 433 | 495 | 557 | 619 | | | 80% | 7 | 14 | 35 | 71 | 141 | 212 | 283 | 354 | 424 | 495 | 566 | 636 | 707 | | | 90% | 8 | 16 | 40 | 80 | 159 | 239 | 318 | 398 | 477 | 557 | 636 | 716 | 795 | | %) | | | | | | | | | | | | | | | | | 100%
-legged | 9 | 18
ake | 44 | 88 | 177 | 265 | | lity lev | | 619 | 707 | 795 | 884 | | Black | 100%
c-legged | 9
kittiw | | 44 | | | | Morta | | el | | 707 | 795 | 884 | | Black | 100% | 9
kittiw | | 5% | | | | Morta | ility lev | el | | 80% | 90% | | | Black | 100%
c-legged | 9
kittiw | ake | | (% | 6 of dis | placed | Morta
birds a | ility leve
t risk o | el
f morta | lity) | | | | | Black
Pre-b | 100% -legged breeding | 9 kittiw | ake
2% | 5% | (%
10% | % of dis | placed | Morta
birds a | lity levent risk o | el
f morta
60% | lity)
70% | 80% | 90% | 100% | | Black
Pre-b | 100% a-legged breeding | 9 kittiw 1% 1 | 2%
1 | 5% | 10% 6 | 6 of dis | 30% | Morta birds a 40% | t risk o | 60% | 70% | 80% 46 | 90% 52 | 100 % | | Black
Pre-b | 100%
c-legged
reeding
10%
20% | 9 kittiw 1% 1 | 2%
1
2 | 5% 3 6 | (%
10%
6
11 | 6 of dis 20% 11 23 | 30%
17
34 | Morta
birds a
40%
23
46 | 50%
29 | 60%
34
69 | 70% 40 80 | 80% 46 92 | 90% 52 103 | 100 % 57 115 | | Black
Pre-b | 100%
c-legged
reeding
10%
20%
30% | 9 kittiw 1% 1 1 2 | 2%
1
2
3 | 5% 3 6 9 | (%) 10% 6 11 17 | 20% 11 23 34 | 30%
17
34
52 | Morta birds a 40% 23 46 69 | 50%
29
57
86 | 60%
34
69
103 | 70%
40
80
121 | 80% 46 92 138 | 90% 52 103 155 | 100%
57
115
172 | | Black
Pre-b | 100%
c-legged
reeding
10%
20%
30%
40% | 9 kittiw 1% 1 1 2 2 | 2% 1 2 3 5 | 5% 3 6 9 11 | 10%
6
11
17
23 | 20% 11 23 34 46 | 30%
17
34
52
69 | Morta birds a 40% 23 46 69 92 | 50%
29
57
86
115 | 60%
34
69
103
138 | 70% 40 80 121 161 | 80%
46
92
138
184 | 90%
52
103
155
207 | 100%
57
115
172
230 | | Black
Pre-b | 100%
c-legged
reeding
10%
20%
30%
40%
50% | 9 kittiw 1% 1 1 2 2 3 | 2% 1 2 3 5 6 | 5%
3
6
9
11 | 10%
6
11
17
23
29 | 20% 11 23 34 46 57 | 30%
17
34
52
69
86 | Morta birds a 40% 23 46 69 92 115 | 50%
29
57
86
115
144 | 60%
34
69
103
138
172 | 70%
40
80
121
161
201 | 80%
46
92
138
184
230 | 90%
52
103
155
207
258 | 100%
57
115
172
230
287 | | Black
Pre-b | 100%
c-legged
10%
20%
30%
40%
50% | 9 kittiw 1% 1 1 2 2 3 3 | 2% 1 2 3 5 6 7 | 5%
3
6
9
11
14
17 | 10%
6
11
17
23
29
34 | 20% 11 23 34 46 57 69 | 30%
17
34
52
69
86
103 | Morta
birds a
40%
23
46
69
92
115
138 | 50%
29
57
86
115
144
172 | 60%
34
69
103
138
172
207 | 70%
40
80
121
161
201
241 | 80%
46
92
138
184
230
276 | 90%
52
103
155
207
258
310 | 100%
57
115
172
230
287
344 | | Black | 100%
c-legged
reeding
10%
20%
30%
40%
50%
60%
70% | 9 kittiw 1% 1 1 2 2 3 3 4 | 2% 1 2 3 5 6 7 8 | 5%
3
6
9
11
14
17
20 | 10%
6
11
17
23
29
34
40 | 20% 11 23 34 46 57 69 80 | 30%
17
34
52
69
86
103
121 | Morta
birds a
40%
23
46
69
92
115
138
161 | 50%
29
57
86
115
144
172
201 | 60%
34
69
103
138
172
207
241 | 70%
40
80
121
161
201
241
281 | 80%
46
92
138
184
230
276
321 | 90%
52
103
155
207
258
310
362 | 100%
57
115
172
230
287
344
402 | Table 1.33: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Cittiwa | | | | | | (% of d | M
isplaced | ortality
birds a | | mortalit | ty) | | | | |---------------------------------|---|--------------------|--------------------------|--|--|---------------------------------------|--|--|-------------------------------|--|--------------------------------|---|---|--| | Breed | ing | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ıt) | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 14 | 18 | 21 | 25 | 28 | 32 | 35 | | el
Hei | 20% | 1 | 1 | 4 | 7 | 14 | 21 | 28 | 35 | 43 | 50 | 57 | 64 | 71 | | level
acement) | 30% | 1 | 2 | 5 | 11 | 21 | 32 | 43 | 53 | 64 | 74 | 85 | 96 | 106 | | | 40% | 1 | 3 | 7 | 14 | 28 | 43 | 57 | 71 | 85 | 99 | 114 | 128 | 142 | | Displacement
at risk of disp | 50% | 2 | 4 | 9 | 18 | 35 | 53 | 71 | 89 | 106 | 124 | 142 | 160 | 177 | | o o | 60% | 2 | 4 | 11 | 21 | 43 | 64 | 85 | 106 | 128 | 149 | 170 | 192 | 213 | | ris | 70% | 2 | 5 | 12 | 25 | 50 | 74 | 99 | 124 | 149 | 174 | 199 | 223 | 248 | | at C | 80% | 3 | 6 | 14 | 28 | 57 | 85 | 114 | 142 | 170 | 199 | 227 | 255 | 284 | | | | 10 | 6 | 16 | 32 | 64 | 96 | 128 | 160 | 192 | 223 | 255 | 287 | 319 | | %) | 90% | 3 | U | 10 | 02 | <u> </u> | | | | _ | | | | | | | 90%
100%
-legged | 4 | 7 | 18 | 35 | 71 | 106 | 142
Morta | 177
lity leve | | 248
llity) | 284 | 319 | 355 | | | 100%
c-legged | 4
kittiwa | 7
ake | 18 | 35 | 71
% of dis | 106
placed | 142
Morta
birds a | ılity leve
t risk o | el
f morta | lity) | | | | | Black | 100%
-legged
ding | 4 | 7 | 18
5% | 35
(% | 71
% of dis
20% | 106 placed 30% | Morta
birds a | lity leve
t risk o | el
f morta
60% | lity)
70% | 80% | 90% | 100% | | lack | 100%
c-legged | 4
kittiwa | 7
ake | 5%
4 | 35 | 71
% of dis | 106
placed | 142
Morta
birds a | ılity leve
t risk o | el
f morta | lity) | | | | | Black | 100%
-legged
ding | 4 kittiwa | 7
ake
2% | 18
5% | 35
(% | 71
% of dis
20% | 106 placed 30% | Morta
birds a | lity leve
t risk o | el
f morta
60% | lity)
70% | 80% | 90% | 100% | | Black | 100%
ding
10% | 4 kittiw 1% | 7 ake 2% | 5%
4 | 35
(%
10%
7 | 71 6 of dis 20% | 106 placed 30% 22 | Morta
birds a
40% | t risk o | 60% | 70% | 80% 58 | 90% 65 | 100% 73 | | Black | 100%
ding
10%
20% | 1%
1
1 | 7 ake 2% 1 3 | 5%
4
7 | 35 (% 10% 7 15 | 71 6 of dis 20% 15 29 | 106 placed 30% 22 44 | 142
Morta
birds a
40%
29
58 | 50%
36
73 | 60%
44
87 | 70% 51 102 | 80% 58 116 | 90% 65 131 | 100% 73 145 | | Black | 100%
c-legged
ding
10%
20%
30% | 1%
1 1 2 | 7 ake 2% 1 3 4 | 5%
4
7
11 | 35
(%
10%
7
15
22 | 71 6 of dis 20% 15 29 44 | 106 placed 30% 22 44 65 | 142
Morta
birds a
40%
29
58
87 | 50%
36
73
109 | 60%
44
87
131 | 70%
51
102
152 | 80% 58 116 174 | 90% 65 131 196 | 100%
73
145
218 | | Black | 100%
ding
10%
20%
30%
40% | 1% 1 1 2 3 | 7 ake 2% 1 3 4 6 | 5%
4
7
11
15 | 35
(%
10%
7
15
22
29 | 71 6 of dis 20% 15 29 44 58 | 30%
22 44 65 87 | 142
Morta
birds a
40%
29
58
87
116 | 50%
36
73
109
145 | 60%
44
87
131 | 70%
51
102
152
203 | 80%
58
116
174
232 | 90%
65
131
196
261 | 100%
73
145
218
290 | | Black | 100%
c-legged
ding
10%
20%
30%
40%
50% | 1% 1 2 3 4 | 7 ake 2% 1 3 4 6 7 | 5%
4
7
11
15
18 | 35
(%
10%
7
15
22
29
36 | 71 6 of dis 20% 15 29 44 58 73 | 30%
22
44
65
87
109 | 142
Morta
birds a
40%
29
58
87
116
145 | 50% 36 73 109 145 182 | 60%
44
87
131
174
218 | 70% 51 102 152 203 254 | 80%
58
116
174
232
290 | 90%
65
131
196
261
327 | 100%
73
145
218
290
363 | | Black | 100% c-legged ding 10% 20% 30% 40% 50% 60% | 1% 1 1 2 3 4 | 7 ake 2% 1 3 4 6 7 | 5%
4
7
11
15
18
22 | 35
(%
7
15
22
29
36
44 | 71 6 of dis 20% 15 29 44 58 73 87 | 30% 22 44 65 87 109 131 | 142
Morta
birds a
40%
29
58
87
116
145
174 | 50% 36 73 109 145 182 218 | 60%
44
87
131
174
218
261 | 70% 51 102 152 203 254 305 | 80%
58
116
174
232
290
348 | 90%
65
131
196
261
327
392 | 100%
73
145
218
290
363
436 | | Black | 100%
c-legged
ding
10%
20%
30%
40%
50%
60%
70% | 1% 1 1 2 3 4 4 5 | 7 ake 2% 1 3 4 6 7 9 10 | 5%
4
7
11
15
18
22
25 | 35
(%
10%
7
15
22
29
36
44
51 | 71 6 of dis 20% 15 29 44 58 73 87 102 | 30%
22
44
65
87
109
131
152 | 142
Morta
birds a
40%
29
58
87
116
145
174
203 | 50% 36 73 109 145 182 218 254 | 60%
44
87
131
174
218
261
305 | 70% 51 102 152 203 254 305 356 | 80%
58
116
174
232
290
348
407 | 90%
65
131
196
261
327
392
457 | 100%
73
145
218
290
363
436
508 | Table 1.34: Mean predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Kittiwa | ake
In migrat | ion | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | ty) | | | | |-----------------------------|------------------|-----|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 1 | 1 | 3 | 6 | 11 | 17 | 22 | 28 | 34 | 39 | 45 | 50 | 56 | | level | 20% | 1 | 2 | 6 | 11 | 22 | 34 | 45 | 56 | 67 | 78 | 90 | 101 | 112 | | e
ace | 30% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 118 | 134 | 151 | 168 | | ent | 40% | 2 | 4 | 11 | 22 | 45 | 67 | 90 | 112 | 134 | 157 | 179 | 202 | 224 | | | 50% | 3 | 6 | 14 | 28 | 56 | 84 | 112 | 140 | 168 | 196 | 224 | 252 | 280 | | lace
k of | 60% | 3 | 7 | 17 | 34 | 67 | 101 | 134 | 168 | 202 | 235 | 269 | 302 | 336 | | ispla
risk | 70% | 4 | 8 | 20 | 39 | 78 | 118 | 157 | 196 | 235 | 274 | 314 | 353 | 392 | | | 80% | 4 | 9 | 22 | 45 | 90 | 134 | 179 | 224 | 269 | 314 | 358 | 403 | 448 | | %) | 90% | 5 | 10 | 25 | 50 | 101 | 151 | 202 | 252 | 302 | 353 | 403 | 454 | 504 | | | 100% | 6 | 11 | 28 | 56 | 112 | 168 | 224 | 280 | 336 | 392 | 448 | 504 | 560 | ### 1.4.6 Manx shearwater ### **Construction and decommissioning phases** 1.4.6.1 Three seasons were defined for Manx shearwater in in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.35 and Table 1.37 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.6. Table 1.35: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Spring migration (construction and decommissioning). | Manx S | Shearwa | ter | | | (% of | displace | | lity level | | itv) | | | | | |---------------------------------|---|---------------------------------|----------------------------|----------------------------|-----------------------------------|--|------------------------------|------------------------|-----------------------------------|--|-----------------------------------|---------------------------------|---------------------------------|---------------------------------| | Spring | migratio | nn - | | | (% 01 | uispiace | u bii us | al HSK U | n mortai | ity) | | | | | | opi ii ig | migratic | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ı£) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 /6 | 0 | 00 /8 | 0 | 0 | | el
mel | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level
acement) | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | di ig | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | o g | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | Displacement
at risk of disp | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | ᆲ | 60% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | %) | 80% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | | 100% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | | | _ | | | | | | | | | | | | | | | Many (| shoarwa | ni . | | | | | M | ortality | level | | | | | | | /lanx | shearwa | ad . | | | | (º/ of di | | ortality | | mortal | i4v/\ | | | | | | | | | | | (% of di | | _ | | mortal | ity) | | | | | | shearwa
migrati | on | 20/ | En/ | | | splaced | birds a | t risk of | | | 000/ | 000/ | 4000/ | | | migrati | on
1% | 2% | 5% | 10% | 20% | splaced | birds a | t risk of | 60% | 70% | 80% | 90% | 100% | | pring | migrati | on
1%
0 | 0 | 0 | 10% | 20% | 30% | 40% | 50% | | 70% | 80% 0 | 90% | 100% | | pring | migrati
10%
15% | 0
0
0 | 0 | 0 | 10%
0
0 | 20% 0 0 | 30%
0
0 | 40% 0 0 | 50%
0
0 | 60% 0 1 | 70% | | 90% 1 1 | 1 | | pring | migrati
10%
15%
20% | 0
0
0 | 0 0 0 | 0 0 0 | 10%
0
0
0 | 20% 0 0 0 | 30%
0
0
0 | 40% | 50% | 60% | 70% | | 90%
1
1
1 | 1 1 1 | | Spring | 10%
15%
20%
25% | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 10%
0
0
0
0 | 20%
0
0
0
0 | 30%
0
0 | 40% 0 0 | 50%
0
0 | 60% 0 1 | 70% | | 1
1
1
1 | 1
1
1
2 | | pring | migrati
10%
15%
20%
25%
30% | 0
0
0 | 0 0 0 | 0 0 0 | 10%
0
0
0 | 20% 0 0 0 | 30%
0
0
0 | 40% 0 0 | 50%
0
0 | 60% 0 1 | 70% | 0
1
1
1
1 | 1
1
1
1
2 | 1
1
1
2
2 | | pring | 10%
15%
20%
25%
30%
35% | 0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 10%
0
0
0
0 | 20%
0
0
0
0 | 30%
0
0
0 | 40% 0 0 | 50%
0
0 | 60% 0 1 | 70%
0
1
1
1
1
1 | 0
1
1
1
1
2 | 1
1
1
1
2
2 | 1
1
1
2
2
2 | | Spring | migrati
10%
15%
20%
25%
30% | 1%
0
0
0
0 | 0
0
0
0 | 0
0
0
0 | 10%
0
0
0
0
0 | 20%
0
0
0
0
0 | 30%
0
0
0
0
0 | 40% 0 0 0 1 | 50%
0
0
1
1
1
1 | 60%
0
1
1
1
1
1
1 | 70% 0 1 1 1 1 1 2 | 0
1
1
1
1
2
2 | 1
1
1
1
2
2
2 | 1
1
1
2
2 | | | 10%
15%
20%
25%
30%
35% | 1%
0
0
0
0
0 | 0
0
0
0
0 | 0
0
0
0
0 | 10%
0
0
0
0
0
0 | 20%
0
0
0
0
0
0
0 | 30%
0
0
0
0
0 | 40% 0 0 0 1 | 50%
0
0
1
1 | 60%
0
1
1
1
1 | 70%
0
1
1
1
1
1 | 0
1
1
1
1
2 | 1
1
1
1
2
2 | 2 2 2 | | Spring | 10%
15%
20%
25%
30%
35%
40% | 0
0
0
0
0
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0 | 10% 0 0 0 0 0 0 0 0 0 0 | 20%
0
0
0
0
0
0
0 | 30% 0 0 0 0 1 1 | 40% 0 0 0 1 1 1 | 50%
0
0
1
1
1
1 | 60%
0
1
1
1
1
1
1 | 70% 0 1 1 1 1 1 2 | 0
1
1
1
1
2
2 | 1
1
1
1
2
2
2 | 1
1
1
2
2
2
2 | Table 1.36: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Manx S | Shearwa | ter | | | (% of (| displace | | ity level
at risk c | l
of mortal | ity) | | | | | |----------------------------|---------|-----|----|----|---------|----------|-----|------------------------|----------------|------|-----|-----|------|------| | | iig | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | | level | 15% | 2 | 4 | 9 | 19 | 37 | 56 | 75 | 94 | 112 | 131 | 150 | 169 | 187 | | | 20% | 2 | 5 | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | | ment
displa | 25% | 3 | 6 | 16 | 31 | 62 | 94 | 125 | 156 | 187 | 219 | 250 | 281 | 312 | | em
f di | 30% | 4 | 7 | 19 | 37 | 75 | 112 | 150 | 187 | 225 | 262 | 300 | 337 | 375 | | Displacem
It risk of di | 35% | 4 | 9 | 22 | 44 | 87 | 131 | 175 | 219 | 262 | 306 | 350 | 393 | 437 | | ispla
risk | 40% | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | | a t | 60%
| 7 | 15 | 37 | 75 | 150 | 225 | 300 | 375 | 450 | 524 | 599 | 674 | 749 | | %) | 80% | 10 | 20 | 50 | 100 | 200 | 300 | 400 | 500 | 599 | 699 | 799 | 899 | 999 | | | 100% | 12 | 25 | 62 | 125 | 250 | 375 | 500 | 624 | 749 | 874 | 999 | 1124 | 1249 | Table 1.37: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Autumn migration (construction and decommissioning). | Manx | Shearwa | iter _ | | | | | Morta | lity level | <u> </u> | | | | | | |----------------------------------|---|--|----------------------------------|----------------------------------|--------------------|---|--|---|---|-------------------|--------------------|--|--|---| | | | | | | (% of | displace | d birds | at risk c | of morta | lity) | | | | | | Autun | nn migrat | tion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | acem | 15% | 0 | 1 | 1 | 3 | 5 | 8 | 11 | 14 | 16 | 19 | 22 | 25 | 27 | | | 20% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | Displacement
at risk of displ | 25% | 0 | 1 | 2 | 5 | 9 | 14 | 18 | 23 | 27 | 32 | 36 | 41 | 45 | | em
f d | 30% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 54 | | k ac | 35% | 1 | 1 | 3 | 6 | 13 | 19 | 25 | 32 | 38 | 44 | 51 | 57 | 64 | | ris | 40% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 36 | 44 | 51 | 58 | 65 | 73 | | | 60% | 1 | 2 | 5 | 11 | 22 | 33 | 44 | 54 | 65 | 76 | 87 | 98 | 109 | | %) | 80% | 1 | 3 | 7 | 15 | 29 | 44 | 58 | 73 | 87 | 102 | 116 | 131 | 145 | | | | | | | | | I = 4 | 70 | 0.4 | 400 | 407 | 4 4 5 | 400 | 400 | | | 100% | 2 | 4 | 9 | 18 | 36 | 54 | 73 | 91 | 109 | 127 | 145 | 163 | 182 | | | 100%
shearwa | | 4 | 9 | 18 | <u> </u> | | ortality | _ | 109 | 127 | 145 | 163 | 182 | | | | | 4 | 9 | | | М | ortality | _ | | | 145 | 163 | 182 | | /lanx | | al | 4 | 9 | | | М | ortality | level | | | 145 | 163 | 182 | | /lanx | shearwa | al | 2% | 9
5% | | | М | ortality | level | | | 80% | 90% | 100% | | Manx | shearwa | ai
ntion | , | | | (% of di | M
splaced | ortality
birds a | level
at risk of | mortal | ity) | ' | | | | Manx
Autun | shearwa | ation
1% | 2% | 5% | 10% | (% of di | M
splaced | ortality
birds a | level
at risk of | mortal | 70% | <u>'</u> | 90% | 100% | | Manx
Autun | shearwann migra | ation 1% | 2% | 5% | 10% | (% of di 20% 0 | M
splaced | ortality
birds a | level
at risk of | mortal | 70% | 80% | 90% | 100 % | | /Janx
Autun | shearwa
nn migra
10%
15% | ation 1% 0 0 | 2%
0 | 5%
0 | 10% 0 | 20% 0 0 | M
splaced | ortality birds a 40% | level
at risk of
50%
1 | 60% | 70% | 80% 1 2 | 90% 1 2 | 100%
2
2 | | Manx
Autun | nn migra 10% 15% 20% | 1%
0
0
0 | 2% 0 0 0 | 5% 0 0 0 | 10%
0
0 | (% of di
20%
0
0
1 | M
splaced | birds a 40% 1 1 | Som 1 1 2 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 | 60% 1 1 2 | 70%
1
2
2 | 80% 1 2 3 | 90%
1
2
3 | 100%
2
2
2
3 | | Manx
Autun | 10%
15%
20%
25% | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2% 0 0 0 0 | 5%
0
0
0 | 10%
0
0
0 | (% of di
20%
0
0
1 | M
splaced | birds a 40% 1 1 1 2 | Some | 60% 1 1 2 2 | 70% 1 2 2 3 | 80%
1
2
3
3 | 90%
1
2
3
4 | 100%
2
2
2
3
4 | | Manx
Autun | 10%
15%
20%
25%
30% | 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0 | 5%
0
0
0
0 | 10%
0
0
0 | (% of di
20%
0
0
1
1 | 30%
0
1
1
1
1
2 | ## Description of the image | 50% 1 1 2 2 2 3 | 60% 1 1 2 2 3 3 | 70% 1 2 2 3 3 | 80%
1
2
3
3
4 | 90%
1
2
3
4
4 | 100%
2
2
3
4
5 | | Manx | 10%
15%
20%
25%
30%
35%
40% | 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0 | (% of di
20%
0
0
1
1
1
1 | 30%
0
1
1
1
1
2
2 | ## April | 50% 1 1 2 2 2 3 3 | 60% 1 1 2 2 3 3 4 | 70% 1 2 2 3 3 4 | 80%
1
2
3
3
4
4
5 | 90%
1
2
3
4
4
5
6 | 100%
2
2
2
3
4
5
6 | | /lanx | 10%
15%
20%
25%
30%
35% | 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 10%
0
0
0 | (% of di
20%
0
0
1
1
1 | 30%
0
1
1
1
1
2 | ## Description of the image | 50% 1 1 2 2 2 3 | 60% 1 1 2 2 3 3 | 70% 1 2 2 3 3 4 4 | 80%
1
2
3
3
4
4 | 90% 1 2 3 4 4 5 | 100%
2
2
3
4
5
6 | ## **Operations and maintenance phase** 1.4.6.2 Three seasons were defined for Manx shearwater in in
Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.38 and Table 1.40 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C.6. Table 1.38: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Spring migration (operations and maintenance phase). | x S | Shearwa | ter | | | | (% of d | M
lisplaced | ortality
I birds a | | morta <u>lit</u> | y) | | | | |-----------------|---|--|----------------------------------|----------------------------------|-----------------------------------|----------------------|-----------------------------------|------------------------|------------------------------|------------------------------|--|--|--|------------------------------------| | ring | migration | on | | | | <u> </u> | | | | | • / | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ΈЩ | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | dist | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | o
Jo | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | | at risk of disp | 60% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | r r | 70%
80% | 0 | 0 | 0 | 0 | 0 | 1 1 | 1 | 1 1 | 1 | 2 | 2 | 2 | 2 | | | | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | | % | QN0/- | | | 10 | 10 | | 1 | | 1 | | | _ | | | | | 90%
100%
shearw | 0
vater | 0 | 0 | 0 (9 | 1
% of dis | Morta
splaced | lity lev
birds a | | 2
f morta | 2
ality) | 2 | 3 | 3 | | nx : | 100% | 0
vater
tion | 0 | 0 | (9 | % of dis | splaced | birds a | el
at risk o | f morta | ılity) | | | | | nx : | 100%
shearw | o
vater
tion
1% | 2% | 5 % | 10% | % of dis | splaced | birds a | el
at risk o | f morta | 70% | 80% | 90%
1 | | | nx : | 100% shearw g migrat | vater tion 1% | 2%
0 | 5%
0 | 10% | % of dis | 30% | 40% | el at risk o | 60% | ılity) | | | 100 ° | | nx : | 100%
shearw
g migrat
10%
20% | 0 vater tion 1% 0 0 | 2%
0
0 | 5%
0
0 | 10%
0
0 | % of dis | 30%
0
0 | 40% 0 0 | el st risk of 50% 0 1 | 60% | 70%
0
1 | 80%
0
1 | 90% 1 1 | 100° | | nx : | 100%
shearw
g migrat
10%
20%
30% | 0 vater tion 1% 0 0 | 2%
0
0
0 | 5%
0
0
0 | 10%
0
0 | % of dis | 30% | 40% | el at risk o | 60% | 70%
0
1 | 80% 0 1 | 90% 1 1 2 | 100° | | nx : | 100%
shearw
migrat
10%
20%
30%
40% | 0 vater tion 1% 0 0 0 0 | 2%
0
0
0
0 | 5%
0
0
0
0 | 10%
0
0
0 | % of dis | 30%
0
0
1 | 40% 0 0 1 | el st risk o 50% 0 1 1 1 1 | 60% 0 1 1 | 70% 0 1 1 2 | 80%
0
1
1
2 | 90%
1
1
2
2 | 100° 1 1 2 2 | | nx : | 100%
shearw
g migrat
10%
20%
30% | 0 vater tion 1% 0 0 | 2%
0
0
0 | 5%
0
0
0 | 10%
0
0 | % of dis | 30%
0
0
1 | 40% 0 0 1 1 | 50% 0 1 | 60%
0
1 | 70%
0
1 | 80% 0 1 | 90% 1 1 2 | 100° 1 1 2 | | nx : | 100%
shearw
migrat
10%
20%
30%
40%
50% | 0 0 1% 0 0 0 0 0 0 0 | 2%
0
0
0
0 | 5%
0
0
0
0 | 10%
0
0
0
0 | % of dis | 30%
0
0
1
1 | 40% 0 0 1 1 | 50%
0
1
1
1
2 | 60%
0
1
1
1
2 | 70% 0 1 1 2 2 | 80%
0
1
1
2
2 | 90%
1
1
2
2
3 | 100° 1 1 2 2 3 | | nx : | 100% shearw g migrat 10% 20% 30% 40% 50% 60% | 0
0
1%
0
0
0
0
0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 10%
0
0
0
0
0 | 20% 0 0 0 0 1 | 30%
0
0
1
1
1 | 40% 0 0 1 1 1 | 50% 0 1 1 1 2 2 | 60% 0 1 1 1 2 2 | 70% 0 1 1 2 2 3 | 80%
0
1
1
2
2
2 | 90% 1 1 2 2 3 3 | 100°
1
1
2
2
3
4 | | nx : | 100% shearw migrat 10% 20% 30% 40% 50% 60% 70% | 0
0
1%
0
0
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0
0
0
0 | % of dis | 30%
0
0
1
1
1
1 | 40% 0 0 1 1 1 2 | 50% 0 1 1 2 2 2 | 60% 0 1 1 1 2 2 3 | 70%
0
1
1
2
2
3
3 | 80%
0
1
1
2
2
3
3 | 90%
1
1
2
2
3
3
4 | 100° 1 1 2 2 3 4 4 | Table 1.39: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | | Shearwa | ter | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | (y) | | | | |----------------|---------|-----|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|-----|------|------| | Breedi | ng | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | | level | 20% | 2 | 5 | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | | | 30% | 4 | 7 | 19 | 37 | 75 | 112 | 150 | 187 | 225 | 262 | 300 | 337 | 375 | | ment
displa | 40% | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | | | 50% | 6 | 12 | 31 | 62 | 125 | 187 | 250 | 312 | 375 | 437 | 500 | 562 | 624 | | lace
k of | 60% | 7 | 15 | 37 | 75 | 150 | 225 | 300 | 375 | 450 | 524 | 599 | 674 | 749 | | ispla
risk | 70% | 9 | 17 | 44 | 87 | 175 | 262 | 350 | 437 | 524 | 612 | 699 | 787 | 874 | | _ 0 | 80% | 10 | 20 | 50 | 100 | 200 | 300 | 400 | 500 | 599 | 699 | 799 | 899 | 999 | | %) | 90% | 11 | 22 | 56 | 112 | 225 | 337 | 450 | 562 | 674 | 787 | 899 | 1012 | 1124 | | | 100% | 12 | 25 | 62 | 125 | 250 | 375 | 500 | 624 | 749 | 874 | 999 | 1124 | 1249 | Table 1.40: Mean predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during the Autumn migration (operation and maintenance phase). | x S | Shearwa | ter | | | | | | ortality | | | | | | | |-------------------------------|---|-------------------------------|----------------------------------|-----------------------------|--|-----------------------|---|---------------------------------------|------------------------------|-------------------|-----------------|--|---|-------------------------------------| | | | ion. | | | | (% of d | isplaced | birds a | t risk of | mortalit | y) | | | | | ımı | n migrat | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | , | 10% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | acement | 20% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | 2 | 30% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 54 | | 2 | 40% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 36 | 44 | 51 | 58 | 65 | 73 | | at lish of disp | 50% | 1 | 2 | 5 | 9 | 18 | 27 | 36 | 45 | 54 | 64 | 73 | 82 | 91 | | 2 | 60% | 1 | 2 | 5 | 11 | 22 | 33 | 44 | 54 | 65 | 76 | 87 | 98 | 109 | | 2 | 70% | 1 | 3 | 6 | 13 | 25 | 38 | 51 | 64 | 76 | 89 | 102 | 114 | 127 | | | 80% | 1 | 3 | 7 | 15 | 29 | 44 | 58 | 73 | 87 | 102 | 116 | 131 | 145 | | _ | | | | 0 | 16 | 33 | 49 | 65 | 82 | 98 | 114 | 131 | 147 | 163 | | 2 | 90% | 2 | 3 | 8 | _ | _ | | | | | + | | | | | | 90%
100%
shearw | 2 | 4 | 9 | 18 | 36 | 54
Morta | 73
lity lev | 91
el
at risk o | 109 | 127
lity) | 145 | 163 | 182 | | IX : | 100% | 2
rater
ation | 4 | 9 | 18 | 36
% of dis | 54
Morta
splaced | 73
lity lev
birds a | el
at risk o | f morta | lity) | | | | | um | 100%
shearw | ater
ation
1% | 2% | 9
5% | 18 (% | 36 % of dis | 54 Morta splaced 30% | 73
lity lev | el | f morta | | 80% | 90% | 1009 | | um | 100%
shearw
nn migra
10% | ation 1% | 2% 0 | 5%
0 | 18 (%) 10% 0 | 36 % of dis | Morta splaced 30% | 73 lity lev birds a | el
at risk o
50% | 60% | 70% | 80% | 90% | 100 ° 2 | | um | 100%
shearw
nn migra
10%
20% | 2 ater 1% 0 0 | 2% 0 0 | 5%
0
0 | 18 (%) 10% 0 0 | 36 % of dis 20% 0 1 | Morta
splaced
30%
0 | 73 lity lev birds a 40% | el at risk o 50% 1 2 | 60% | 70%
1
2 | 80% 1 3 | 90% 1 3 | 100°
2
3 | | um | 100%
shearw
nn migra
10%
20%
30% | 2 atter 1% 0 0 0 0 | 2% 0 0 0 | 5%
0
0 | 18 (%) 10% 0 | 36 % of dis | 54 Morta splaced 30% 0 1 | 73 lity lev birds a 40% 1 1 2 | el | 60% 1 2 3 | 70% | 80% 1 3 4 | 90% 1 3 4 | 100°
2
3
5 | | um | 100%
shearw
nn migra
10%
20% | 2 ater 1% 0 0 | 2% 0 0 | 5%
0
0 | 18 (%) 10% 0 0 | 36 % of dis 20% 0 1 | 54
Morta
splaced
30%
0
1
1
2 | 73 lity lev birds a 40% | el at risk o 50% 1 2 | 60% 1 2 3 4 | 70%
1
2 | 80% 1 3 | 90% 1 3 | 100°
2
3 | | um | 100%
shearw
nn migra
10%
20%
30% | 2 atter 1% 0 0 0 0 | 2% 0 0 0 | 5%
0
0 | 18 (%) 10% 0 0 0 | 36 % of dis 20% 0 1 | 54 Morta splaced 30% 0 1 | 73 lity lev birds a 40% 1 1 2 | el | 60% 1 2 3 | 70% 1 2 3 | 80% 1 3 4 | 90% 1 3 4 | 100°
2
3
5 | | um | 100%
shearw
nn migra
10%
20%
30%
40% | 2 ater ation 1% 0 0 0 0
| 2%
0
0
0 | 5%
0
0
0 | 18 (%) 10% 0 0 0 | 36 20% 0 1 1 | 54
Morta
splaced
30%
0
1
1
2 | 73 lity lev birds a 40% 1 1 2 3 | 50% 1 2 2 3 | 60% 1 2 3 4 | 70% 1 2 3 4 | 80%
1
3
4
5 | 90%
1
3
4
6 | 100° 2 3 5 6 | | um | 100%
shearw
nn migra
10%
20%
30%
40%
50% | 2 atter ation 1% 0 0 0 0 0 0 | 2%
0
0
0
0 | 5%
0
0
0
0 | 18 (%) 10% 0 0 0 | 36 20% 0 1 1 1 2 | 30%
0
1
2
2 | 73 lity lev birds a 40% 1 1 2 3 3 | 50%
1
2
2
3
4 | 60% 1 2 3 4 5 | 70% 1 2 3 4 6 | 80%
1
3
4
5
6 | 90%
1
3
4
6
7 | 100°
2
3
5
6
8 | | at risk of displacement) in x | 100%
shearw
10%
20%
30%
40%
50% | 2 ater ation 1% 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 18
(%)
10%
0
0
0
1
1
1 | 36 20% 0 1 1 1 2 2 | 30% 0 1 1 2 2 3 | 73 lity lev birds a 40% 1 1 2 3 3 4 | 50% 1 2 2 3 4 5 | 60% 1 2 3 4 5 | 70% 1 2 3 4 6 7 | 80%
1
3
4
5
6
8 | 90% 1 3 4 6 7 9 | 1009
2
3
5
6
8
10 | | um | 100%
shearw
10%
20%
30%
40%
50%
60%
70% | 2 atter 1% 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0 | 18
(%)
10%
0
0
0
1
1
1 | 36 20% 0 1 1 1 2 2 2 | 30%
0
1
2
2
3
3 | 73 lity level birds a 40% 1 | 50% 1 2 2 3 4 5 | 60% 1 2 3 4 5 6 7 | 70% 1 2 3 4 6 7 | 80%
1
3
4
5
6
8
9 | 90%
1
3
4
6
7
9
10 | 100%
2
3
5
6
8
10 | ### 1.4.7 Red-throated diver ### **Construction and decommissioning phases** 1.4.7.1 Three seasons were defined for red-throated diver in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (<u>Document reference F6.5.1</u>). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.41 to Table 1.43 for the construction and decommissioning phase. Upper and lower matrices are presented in Appendix C.7. Table 1.41: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during the Spring migration (construction and decommissioning). All entries are zero. | Red-th | Red-throated diver | | | | | Mortality level | | | | | | | | | |-----------------------------|---|----|----|----|-----|-----------------|-----|-----|-----|-----|-----|-----|-----|------| | Spring | (% of displaced birds at risk of mortality) pring migration | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ment level
displacement) | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | le/ | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent
spl | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
di | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
It risk of di | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at . | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 1.42: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during the Autumn migration (construction and decommissioning). All entries are zero. | | Red-throated diver
(% of displace
Autumn migration | | | | | | Mortality level ed birds at risk of mortality) | | | | | | | | |----------------------------------|--|-----------|----|----|-----|-----|--|-----|-----|-----|-----|-----|-----|------| | | n migrat | ion
1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
It risk of displ | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 1.43: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during non-breeding season (construction and decommissioning). All entries are zero. | Red-th | Red-throated diver
(% of disp | | | | | displace | Mortality level laced birds at risk of mortality) | | | | | | | | |-----------------------------|----------------------------------|----|----|----|-----|----------|---|-----|-----|-----|-----|-----|-----|------| | Non-b | eeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | £ | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ner | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ment level
displacement) | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | nt l | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | cement
of displ | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ₩ ₩ | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displad
at risk d | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Dis
at ri | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

 | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ಲ | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.4.7.2 Operations and maintenance phase Table 1.44Three seasons were defined for redthroated diver in Chapter 6, Annex 5.1: Offshore ornithology baseline characterisation technical report of the Environmental Statement (Document reference F6.5.1). Displacement matrices for each of these seasons, using the mean-peak populations presented in Table 1.4 are presented in Table 1.46 for the operations and maintenance phase. Upper and lower matrices are presented in Appendix C.7. Table 1.44: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during Spring migration (operations and maintenance phase). All entries are zero. | | ed-throated diver Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | | | | | |----------------------------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | Spring | Spring migration | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent
spl | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displ | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at D | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 1.45: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during Autumn migration (operations and maintenance phase). All entries are zero. | | Red-throated diver Mortality level (% of displaced birds at risk of mortality) Autumn migration | | | | | | | | | | | | | | |----------------------------------|---|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | | migrat | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
tt risk of displ | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TO . | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table 1.46: Mean predicted red-throated diver mortality for the Mona Array Area plus 4 km buffer during non-breeding period (operations and maintenance phase). All entries are zero. | Red-th | Red-throated diver (% of displace | | | | | | | Mortality level ed
birds at risk of mortality) | | | | | | | |-----------------------------|-----------------------------------|----|----|----|-----|-----|-----|--|-----|-----|-----|-----|-----|------| | Non-b | Non-breeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace e | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ## 1.5 Summary Tables 1.5.1.1 Results from the matrix tables in section 1.3 are summarised below for the construction and decommissioning phases (Table 1.47) and for the operations and maintenance phase (Table 1.48). Table 1.47: Seasonal displacement estimates for the Mona Array Area plus 2 km buffer (or Mona Array Area plus 4 km buffer if appropriate for the species) during construction and decommissioning | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates (%) | Mortality rates(%) | Number of birds
subject to mortality
(individuals) | |------------------|-----------------------------|---|------------------------|--------------------|--| | Common guillemot | Breeding | 4,220 | 15% | 1% | 6 | | | | | 30% | 10% | 148 | | | Non-breeding | 3,756 | 15% | 1% | 6 | | | | | 30% | 10% | 131 | | Razorbill | Pre-breeding season/spring | 1,924 | 15% | 1% | 3 | | | migration | | 30% | 10% | 67 | | | Breeding | 83 | 15% | 1% | 0 | | | | | 30% | 10% | 3 | | | Post breeding season/autumn | 91 | 15% | 1% | 0 | | | migration | | 30% | 10% | 3 | | | Non-breeding/winter season | 421 | 15% | 1% | 1 | | | | | 30% | 10% | 15 | | Atlantic puffin | Breeding | 15 | 15% | 1% | 0 | | | | | 30% | 10% | 1 | | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates (%) | Mortality rates(%) | Number of birds
subject to mortality
(individuals) | |-----------------|-----------------------------|---|------------------------|--------------------|--| | | Non-breeding/winter season | <u>22</u> 0 | 15% | 1% | 0 | | | | | 30% | 10% | <u>1</u> 0 | | Northern gannet | Pre-breeding season/spring | 28 | 30% | 1% | 0 | | | migration | | 40% | 10% | 1 | | | Non-breeding/winter season | 251 | 30% | 1% | 1 | | | | | 40% | 10% | 10 | | | Post breeding season/autumn | 58 | 30% | 1% | 0 | | | migration | | 40% | 10% | 2 | | Black-legged | Pre-breeding season/spring | 88 4 <u>574</u> | 15% | 1% | 1 | | kittiwake | migration | | 35% | 10% | <u>20</u> 31 | | | Breeding | 355 726 | 15% | 1% | 1 | | | | | 35% | 10% | <u>25</u> 12 | | | Post breeding season/autumn | 560 | 15% | 1% | 1 | | | migration | | 35% | 10% | 20 | | Manx shearwater | Pre-breeding season/spring | <u>6</u> 3 | 15% | 1% | 0 | | | migration | | 35% | 10% | 0 | | | Breeding | 1,249 | 15% | 1% | 2 | | | | | 35% | 10% | 44 | | | | 182 16 | 15% | 1% | 0 | | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates (%) | Mortality rates(%) | Number of birds
subject to mortality
(individuals) | |--------------------|-----------------------------|---|------------------------|--------------------|--| | | Post breeding season/autumn | | | | | | | migration | | 35% | 10% | <u>1</u> 6 | | Red-throated diver | Pre-breeding season/spring | 0 | 50% | 1% | 0 | | | migration | | 50% | 10% | 0 | | | Post breeding season/autumn | 0 | 50% | 1% | 0 | | | migration | | 50% | 10% | 0 | | | Non-breeding/winter season | 0 | 50% | 1% | 0 | | | | | 50% | 10% | 0 | Table 1.48: Seasonal displacement estimates for the Mona Array Area plus 2 km buffer (or Mona Array Area plus 4 km buffer if appropriate for the species) during operation and maintenance | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates (%) | Mortality rates(%) | Number of birds
subject to mortality
(individuals) | |------------------|-----------------------------|---|------------------------|--------------------|--| | | Breeding | 4,220 | 30% | 1% | 13 | | Common guillemot | breeding | | 70% | 10% | 295 | | | Non-breeding | 3,756 | 30% | 1% | 11 | | | Non-breeding | | 70% | 10% | 263 | | | Pre-breeding season/spring | 1,924 | 30% | 1% | 6 | | | migration | | 70% | 10% | 135 | | Razorbill | Breeding | 83 | 30% | 1% | 0 | | | breeding | | 70% | 10% | 6 | | | Post breeding season/autumn | 91 | 30% | 1% | 0 | | | migration | | 70% | 10% | 6 | | | Non-breeding/winter season | 421 | 30% | 1% | 1 | | | Non-breeding/winter season | | 70% | 10% | 29 | | | Prooding | 15 | 30% | 1% | 0 | | Atlantic puffin | Breeding | | 70% | 10% | 1 | | | Non broading/winter access | <u>22</u> 0 | 30% | 1% | 0 | | | Non-breeding/winter season | | 70% | 10% | <u>2</u> 0 | | Northern gannet | | 28 | 60% | 1% | 0 | | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates (%) | Mortality rates(%) | Number of birds subject to mortality (individuals) | |--------------------|--------------------------------------|---|------------------------|--------------------|--| | | Pre-breeding season/spring migration | | 80% | 10% | 2 | | | Non-breeding/winter season | 251 | 60% | 1% | 2 | | | Non-breeding/winter season | | 80% | 10% | 20 | | | Post breeding season/autumn | 58 | 60% | 1% | 0 | | | migration | | 80% | 10% | 5 | | | Pre-breeding season/spring | 884 <u>574</u> | 30% | 1% | <u>2</u> 3 | | | migration | | 70% | 10% | 6240 | | Black-legged | Due a dia a | 355 726 | 30% | 1% | 24 | | kittiwake | Breeding | | 70% | 10% | <u>51</u> 25 | | | Post breeding season/autumn | 560 | 30% | 1% | 2 | | | migration | | 70% | 10% | 39 | | | Pre-breeding season/spring | <u>6</u> 3 | 30% | 1% | 0 | | | migration | | 70% | 10% | 0 | | Manx shearwater | Breeding | 1,249 | 30% | 1% | 4 | | Manx Shearwater | breeding | | 70% | 10% | 87 | | | Post breeding season/autumn | 182 16 | 30% | 1% | <u>0</u> 4 | | | migration | | 70% | 10% | 13 | | Red-throated diver | | 0 | 100% | 1% | 0 | | Species | Season | Seasonal mean peak population (Mona Array Area plus 2 km buffer or Mona Array plus 4 km if appropriate for the species) | Displacement rates
(%) | Mortality rates(%) | Number of birds
subject to mortality
(individuals) | |---------|--------------------------------------|---|---------------------------|--------------------|--| | | Pre-breeding season/spring migration | | 100% | 10% | 0 | | | Post breeding season/autumn | 0 | 100% | 1% | 0 | | | migration | | 100% | 10% | 0 | | | Non-breeding/winter season | 0 | 100% | 1% | 0 | | | non-breeding/winter season | | 100% | 10% | 0 | ### 1.6 References Bradbury, G., Trinder, M., Furness, B., Banks, A.N., Caldow, R.W. and Hume, D. (2014) Mapping seabird sensitivity to offshore wind farms. PloS one, 9(9), p.e106366. Cook, A,S.C.P, Humphreys, E.M., Bennet, F., Masden, E.A., and Burton, N.H.K. (2018) Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environmental Research, 140: 278-288. Dierschke V., Furness R.W. & Garthe S. (2016) Seabirds and offshore wind farms in European waters: Avoidance and attraction. Biological Conservation 202: 59-68. Furness, R.W., Wade, H.M. and Masden, E.A. (2013) Assessing vulnerability of marine bird populations to offshore wind farms. Journal of Environmental Management, 119, 56-66. Furness, R.W. (2015) Non-breeding season populations of seabirds in UK waters: Population sizes for Biologically Defined Minimum Population Scales (BDMPS). Natural England Commissioned Reports, No. 164. Available at: http://publications.naturalengland.org.uk/publication/6427568802627584. Accessed August 2023 Furness, B. and Wade, H. (2012) Vulnerability of Scottish Seabirds to Offshore Wind Turbines. Report for Marine Scotland, The Scottish Government. Garthe, S and Hüppop, O. (2004) Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. Journal of Applied Ecology, 41, 724-734. Heinänen
S, Žydelis R, Kleinschmidt B, Dorsch M, Burger C, Morkūnas J, Quillfeldt P, Nehls G. (2020) Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms', Marine Environmental Research, 160, p. 104989. doi:10.1016/j.marenvres.2020.104989. Horswill, C. and Robinson R. A. (2015) Review of seabird demographic rates and density dependence. JNCC Report No. 552. Joint Nature Conservation Committee, Peterborough. Joint Nature Conservation Committee (JNCC). (2023) Seabird Monitoring Programme. Available at https://app.bto.org/seabirds Kaiser, M., Elliott, A., Galanidi, M., Ivor, E., Rees, S., Caldow, R., Stillman, R., Sutherland, W. and Showler, D. (2002) Predicting the Displacement of Common Scoter *Melanitta nigra* from Benthic Feeding Areas Due to Offshore Windfarms (Report No. COWRIE-BEN-03-2002). Report by Bangor University. Report for Collaborative Offshore Wind Research into the Environment (COWRIE). Krijgsveld, K.L., Fijn, R.C., Japink, M., van Horssen, P.W., Heunks, C., Collier, M.P., Poot, M.J.M., Beuker, D. and Dirksen, S. (2011) Effect Studies Offshore Wind Farm Egmond aan Zee: Final report on fluxes, flight altitudes and behaviour of flying birds. Bureau Waardenburg Report No 10-219. Leopold, M.F., Dijkman, E.M. and Teal, L. (2011) Local birds in and around the Offshore Wind farm Egmond aan Zee (OWEZ) (T-0 & T-1, 2002-2010). NoordzeeWind report OWEZ_R_221_T1_20110915_localbirds_final. Imares / NoordzeeWind, Wageningen /IJmuiden. Marine Industry Group for Ornithology (MIG-Birds) (2022) Joint SNCB Interim Advice on the Treatment of Displacement for Red-Throated Diver (2022). Natural England (2021) Offshore Wind Marine Environmental Assessments: Best Practice Advice for Evidence and Data Standards. Phase III: Expectations for data analysis and presentation at examination for offshore wind applications. Peschko, V., Mendel, B., Mercker, M., Dierschke, J. and Garthe, S. (2021) Northern gannets (Morus bassanus) are strongly affected by operating offshore wind farms during the breeding season. J. Environ. Manag. 279, 111509. Available at: https://doi.org/10.1016/j.jenvman.2020.111509. Accessed August 2022. Pettifor, R.A., Caldow, R.W.G., Rowcliffe J.M., Goss-Custard, J.D. and Black, J.M. (2000) Spatially explicit, individual-based, behavioural models of the annual cycle of two migratory goose populations. J. Appl. Ecol. 37:103–35. Searle, K., Mobbs, D., Butler, A., Bogdanova, M., Freeman, S., Wanless, S. and Daunt, F. (2014) Population consequences of displacement from proposed offshore wind energy developments for seabirds breeding at Scottish SPAs (CR/2012/03). Report to Scottish Government. Skov, H., Heinänen, S., Norman, T., Ward, R.M., Méndez-Roldán, S. and Ellis, I. (2018) ORJIP Bird Collision and Avoidance Study. Final report – April 2018. The Carbon Trust, United Kingdom. SMP (2023). Latest SMP productivity estimates. Data supplied (on request) by the British Trust for Ornithology (BTO). Joint Nature Conservation Committee (JNCC). (2022) Joint SNCB Note Interim Displacement Advice Note. Topping, C. and Petersen, I.K. (2011) Report on a red-throated diver agent-based model to assess the cumulative impact from offshore wind farms. Report commissioned by Vattenfall A/S. Aarhus University, DCE - Danish Centre for Environment and Energy. Vanermen, N., Stienen, E.W.M., Courtens, W., Onkelinx, T., Van de walle, M. and Verstraete, H. (2016) Bird monitoring at offshore wind farms in the Belgian part of the North Sea - Assessing seabird displacement effects. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2013 (INBO.R.2013.755887). Instituut voor Natuur- en Bosonderzoek, Brussels. Wade, H.M., Masden E.M., Jackson, A.C. and Furness, R.W. (2016) Incorporating data uncertainty when estimating potential vulnerability of Scottish seabirds to marine renewable energy developments. Marine Policy, 70, 108-113. West, A.D., Goss-Custard, J.D., McGrorty, S., Stillman, R.A., Durell, S.E.A. le V. dit, Stewart, B., Walker, P., Palmer, D.W. and Coates, P. (2003) The Burry shellfishery and oystercatchers: using a behaviour-based model to advise on shellfishery management policy. Marine Ecology Progress Series, 248: 279-292. Woodward, I., Thaxter, C.B., Owen, E. and Cook, A.S.C.P. (2019) Desk-based revision of seabird foraging ranges used for HRA screening. BTO Report 724 for The Crown Estate. # **Appendix A: Bird data for displacement** ## A.1 Monthly abundance estimates Table A. 1: Common guillemot modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|-------|-------|-----|-------|-------|-----|------|-----|-------|-------| | Mona A | rray Area | plus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | 5,739 | 519 | 154 | 713 | 436 | 200 | 215 | 20 | 1,171 | 642 | | LCI | N/A | N/A | 4,895 | 375 | 88 | 477 | 301 | 121 | 144 | 1 | 815 | 466 | | UCI | N/A | N/A | 6,657 | 683 | 247 | 1,000 | 601 | 306 | 313 | 124 | 1,569 | 839 | | Year 2 | 1,162 | 4,415 | 2,702 | 1,919 | 203 | 458 | 836 | 50 | 14 | 408 | 41 | 1,763 | | LCI | 791 | 3,738 | 1,953 | 1,605 | 118 | 338 | 664 | 18 | 3 | 291 | 12 | 1,464 | | UCI | 1,569 | 5,201 | 3,570 | 2,261 | 309 | 599 | 1,026 | 113 | 44 | 552 | 98 | 2,091 | | Year 3 | 3,097 | 1,648 | N/A | LCI | 2,565 | 1,352 | N/A | UCI | 3,665 | 1,978 | N/A Table A. 2: Razorbill modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|-------|-----|-----|-----|-----|-----|------|-----|-----|-----| | Mona A | rray Area | plus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | 1,543 | 8 | 35 | 11 | 23 | 55 | 173 | 0 | 223 | 60 | | LCI | N/A | N/A | 1,104 | 0 | 0 | 0 | 6 | 15 | 58 | 0 | 94 | 10 | | UCI | N/A | N/A | 2,078 | 26 | 72 | 34 | 79 | 103 | 413 | 0 | 350 | 793 | | Year 2 | 387 | 2,305 | 1,097 | 130 | 10 | 17 | 41 | 9 | 0 | 0 | 0 | 619 | | LCI | 172 | 1,547 | 769 | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 409 | | UCI | 735 | 3,219 | 1,484 | 256 | 28 | 36 | 99 | 26 | 0 | 0 | 0 | 870 | | Year 3 | 619 | 960 | 515 | N/A | LCI | 409 | 623 | 357 | N/A | UCI | 870 | 1,391 | 721 | N/A Table A. 3: Atlantic pPuffin modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----| | Mona A | rray Area | plus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | 44 | 8 | 0 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | | LCI | N/A | N/A | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UCI | N/A | N/A | 80 | 23 | 0 | 0 | 63 | 0 | 0 | 0 | 0 | 0 | | Year 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | LCI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UCI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Year 3 | 0 | 0 | N/A | LCI | 0 | 0 | N/A | UCI | 0 | 0 | N/A Table A. 4: Northern gannet modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----| | Mona A | rray Area | plus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | 77 | 52 | 11 | 13 | 209 | 144 | 26 | 26 | 26 | 0 | | LCI | N/A | N/A | 31 | 19 | 0 | 0 | 142 | 91 | 6 | 6 | 6 | 0 | | UCI | N/A | N/A | 124 | 83 | 27 | 32 | 282 | 221 | 50 | 52 | 53 | 0 | | Year 2 | 34 | 0 | 117 | 212 | 59 | 13 | 34 | 66 | 293 | 89 | 13 | 12 | | LCI | 6 | 0 | 64 | 138 | 26 | 0 | 15 | 30 | 188 | 59 | 0 | 0 | | UCI | 61 | 0 | 191 | 302 | 95 | 32 | 64 | 121 | 422 | 131 | 27 | 38 | | Year 3 | 6 | 21 | N/A | LCI | 0 | 0 | N/A | UCI | 20 | 42 | N/A Table A. 5: Black-legged kittiwake modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|----------------|-----------|-------|-----|-----|-----------------------|-----------------------|-----|------|-----|-----|-------| | Mona A | rray Area p | olus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | 548 | 132 | 5 | <u>264</u> 264 | 127 | 55 | 0 | 0 | 242 | 214 | | LCI | N/A | N/A | 337 | 85 | 0 | <u>176</u> 176 | 80 | 20 | 0 | 0 | 146 | 126 | | UCI | N/A | N/A | 822 | 190 | 16 | <u>374</u> 374 | 188 | 92 | 0 | 0 | 367 | 326 | | Year 2 | 287 287 | 258 | 907 | 391 | 199 | 124 | 445 445 | 0 | 0 | 28 | 112 | 879 | | LCI | 204 204 | 175 | 644 | 274 | 51 | 73 | 240 240 | 0 | 0 | 7 | 65 | 574 | | UCI | <u>385</u> 385 | 356 | 1,239 | 526 | 167 | 195 | <u>744</u> 744 | 0 | 0 | 56 | 179 | 1,285 | | Year 3 | 676 | 861 | N/A | LCI | 428 | 592 | N/A | UCI | 1,014 | 1,208 | N/A Table A. 6: Manx shearwater modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar
Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|---------------|----------|-----|-------|-------|-----------------------|--------------|-----|-----|-----| | Mona A | rray Area | plus 2 km | | | | | | | | | | | | Year 1 | N/A | N/A | N/A <u>6</u> | <u>0</u> | 0 | 7 | 324 | <u>32</u> 32 | <u>25</u> 25 | 0 | 0 | 0 | | LCI | N/A | N/A | N/A <u>0</u> | <u>0</u> | 0 | 0 | 80 | <u>6</u> 6 | <u>0</u> 0 | 0 | 0 | 0 | | UCI | N/A | N/A | N/A <u>18</u> | <u>0</u> | 0 | 20 | 820 | <u>57</u> 57 | <u>55</u> 55 | 0 | 0 | 0 | | Year 2 | 0 | 0 | 0 | 6 | 0 | 2,173 | 1,355 | <u>331</u> 331 | <u>7</u> 4 | 0 | 0 | 0 | | LCI | 0 | 0 | 0 | 0 | 0 | 589 | 550 | <u>115</u> 115 | 0 | 0 | 0 | 0 | | UCI | 0 | 0 | 0 | 20 | 0 | 5,538 | 2,575 | 685 | <u>22</u> 9 | 0 | 0 | 0 | | Year 3 | 0 | 0 | N/A | LCI | 0 | 0 | N/A | UCI | 0 | 0 | N/A Table A. 7: Red-throated diver modelled abundance (all behaviours and all ages classes) within the Mona Array Area plus associated buffer. Calendar Years 1, 2 and 3 for surveys: March 2020 to February 2022. Peak figures used in displacement assessment in each season are outlined in bold. | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | |--------|-----------|-----------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----| | Mona A | rray Area | plus 4 km | | | | | | | | | | | | Year 1 | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | LCI | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UCI | N/A | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Year 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | LCI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | UCI | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Year 3 | 0 | 0 | N/A | LCI | 0 | 0 | N/A | UCI | 0 | 0 | N/A # Appendix B: Upper and lower confidence interval abundance estimates ## **B.1** Upper peak abundance estimates Table B. 1: Upper confidence limit peak abundances for use in the assessment for each season. | Species | Pre-breeding season/spring migration | Breeding season | Post breeding season/autumn migration | Non-breeding/winter season | |------------------|--------------------------------------|--------------------|---------------------------------------|----------------------------| | Common guillemot | | | | | | Peak Year 1 | N/A | 6,657 | N/A | 5,201 | | Peak Year 2 | N/A | 3,570 | N/A | 3,665 | | Mean peak | N/A | 5,113 | N/A | 4,433 | | Razorbill | | | | | | Peak Year 1 | 2,078 | 72 | 413 | 793 | | Peak Year 2 | 3,219 | 256 | 26 | 870 | | Mean peak | 2,649 | 164 | 220 | 831 | | Atlantic puffin | | | | | | Peak Year 1 | N/A | 63 | N/A | <u>80</u> 0 | | Peak Year 2 | N/A | 0 | N/A | 0 | | Mean peak | N/A | 31 | N/A | <u>40</u> 0 | | Northern gannet | | | | | | Peak Year 1 | 121 <u>61</u> | 191 282 | 302 <u>53</u> | N/An/a | | Peak Year 2 | 42 | 422 | 131 | N/An/a | | Mean peak | <u>52</u> 82 | 3 <u>51</u> 06 | <u>110</u> 217 | N/An/a | | Species | Pre-breeding season/spring migration | Breeding season | Post breeding season/autumn migration | Non-breeding/winter season | |--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------| | Black-legged kitt | iwake | | | | | Peak Year 1 | 1,239 385 | <u>822</u> 374 | 367 | N/A | | Peak Year 2 | 1,208 | 1,239744 | 1,285 | N/A | | Mean peak | 1,223 <u>797</u> | <u>1,031</u> 559 | 826 | N/A | | Manx shearwater | • | | | | | Peak Year 1 | <u>18</u> 0 | 820 | 5 <u>5</u> 7 | N/A | | Peak Year 2 | 20 | 5,538 | 685 <u>22</u> | N/A | | Mean peak | <u>19</u> 10 | 3,179 | 371 <u>39</u> | N/A | | Red-throated diver | | | (| | | Peak Year 1 | 0 | N/A | 0 | 0 | | Peak Year 2 | 0 | N/A | 0 | 0 | | Mean peak | 0 | N/A | 0 | 0 | # **B.2** Lower peak abundance estimates Table B. 2: Lower confidence limit peak abundances for use in the assessment for each season. | Species | Pre-Breeding season/spring migration | Breeding season | Post Breeding season/autumn migration | Non-breeding/winter season | |-------------------|--------------------------------------|---------------------------|---------------------------------------|----------------------------| | Common guillem | ot | | | | | Peak Year 1 | N/A | 4,895 | N/A | 3,738 | | Peak Year 2 | N/A | 1,953 | N/A | 2,565 | | Mean peak | N/A | 3,424 | N/A | 3,151 | | Razorbill | , | | | | | Peak Year 1 | 1,104 | 15 | 58 | 94 | | Peak Year 2 | 1,547 | 57 | 0 | 409 | | Mean peak | 1,326 | 36 | 29 | 252 | | Atlantic puffin | , | | | | | Peak Year 1 | N/A | 0 | N/A | <u>7</u> 0 | | Peak Year 2 | N/A | 0 | N/A | 0 | | Mean peak | N/A | 0 | N/A | <u>40</u> | | Northern gannet | , | | | | | Peak Year 1 | 6 | 142 | 6 | N/A | | Peak Year 2 | 0 | 188 | 59 | N/A | | Mean peak | 3 | 165 | 32 | N/A | | Black-legged kitt | tiwake | 1 | l . | I | | Peak Year 1 | 644204 | <u>337</u> 176 | 146 | N/A | | Species | Pre-Breeding season/spring migration | Breeding season | Post Breeding season/autumn migration | Non-breeding/winter season | |--------------------|--------------------------------------|-----------------|---------------------------------------|----------------------------| | Peak Year 2 | 592 | 644240 | 574 | N/A | | Mean peak | 618398 | <u>491</u> 208 | 360 | N/A | | Manx shearwater | | | | | | Peak Year 1 | 0 | 80 | <u>0</u> 6 | N/A0 | | Peak Year 2 | 0 | 589 | <u>0</u> 115 | N/A0 | | Mean peak | 0 | 334 | <u>0</u> 61 | N/A0 | | Red-throated diver | | | | | | Peak Year 1 | 0 | N/A | 0 | 0 | | Peak Year 2 | 0 | N/A | 0 | 0 | | Mean peak | 0 | N/A | 0 | 0 | # **Appendix C: Upper and lower confidence interval matrices** ## C.1 Common guillemot Table C. 1: LCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | | Guillemot Mortality level (% of displaced birds at risk of mortality) Breeding | | | | | | | | | | | | | | |---------------------------------|--|----|----|-----|-----|-----|------|------|------|------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 7 | 17 | 34 | 68 | 103 | 137 | 171 | 205 | 240 | 274 | 308 | 342 | | level | 15% | 5 | 10 | 26 | 51 | 103 | 154 | 205 | 257 | 308 | 359 | 411 | 462 | 514 | | 10 | 20% | 7 | 14 | 34 | 68 | 137 | 205 | 274 | 342 | 411 | 479 | 548 | 616 | 685 | | Displacement
t risk of displ | 25% | 9 | 17 | 43 | 86 | 171 | 257 | 342 | 428 | 514 | 599 | 685 | 770 | 856 | | em
f di | 30% | 10 | 21 | 51 | 103 | 205 | 308 | 411 | 514 | 616 | 719 | 822 | 924 | 1027 | | lace
k of | 35% | 12 | 24 | 60 | 120 | 240 | 359 | 479 | 599 | 719 | 839 | 959 | 1078 | 1198 | | ispla
risk | 40% | 14 | 27 | 68 | 137 | 274 | 411 | 548 | 685 | 822 | 959 | 1096 | 1233 | 1369 | | | 60% | 21 | 41 | 103 | 205 | 411 | 616 | 822 | 1027 | 1233 | 1438 | 1643 | 1849 | 2054 | | %) | 80% | 27 | 55 | 137 | 274 | 548 | 822 | 1096 | 1369 | 1643 | 1917 | 2191 | 2465 | 2739 | | | 100% | 34 | 68 | 171 | 342 | 685 | 1027 | 1369 | 1712 | 2054 | 2397 | 2739 | 3081 | 3424 | Table C. 2: UCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Guille
Breed | | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | y) | | | | |----------------------------|------|----|-----|-----|-----|---------|------|---------------------|--------------------|----------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 5 | 10 | 26 | 51 | 102 | 153 | 205 | 256 | 307 | 358 | 409 | 460 | 511 | | level | 15% | 8 | 15 | 38 | 77 | 153 | 230 | 307 | 383 | 460 | 537 | 614 | 690 | 767 | | ace | 20% | 10 | 20 | 51 | 102 | 205 | 307 | 409 | 511 | 614 | 716 | 818 | 920 | 1023 | | ment
displa | 25% | 13 | 26 | 64 | 128 | 256 | 383 | 511 | 639 | 767 | 895 | 1023 | 1150 | 1278 | | em
di | 30% | 15 | 31 | 77 | 153 | 307 | 460 | 614 | 767 | 920 | 1074 | 1227 | 1381 | 1534 | | Displacem
it risk of di | 35% | 18 | 36 | 89 | 179 | 358 | 537 | 716 | 895 | 1074 | 1253 | 1432 | 1611 | 1790 | | ispla
risk | 40% | 20 | 41 | 102 | 205 | 409 | 614 | 818 | 1023 | 1227 | 1432 | 1636 | 1841 | 2045 | | at 🖂 | 60% | 31 | 61 | 153 | 307 | 614 | 920 | 1227 | 1534 | 1841 | 2147 | 2454 | 2761 | 3068 | | %) | 80% | 41 | 82 | 205 | 409 | 818 | 1227 | 1636 | 2045 | 2454 | 2863 | 3272 | 3681 | 4090 | | | 100% | 51 | 102 | 256 | 511 | 1023 | 1534 | 2045 | 2557 | 3068 | 3579 | 4090 | 4602 | 5113 | Table C. 3: LCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Guiller | not
reeding | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | у) | | | | |---------------------------|----------------|----|----|-----|-----|---------|-----|---------------------|--------------------|----------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 6 | 16 | 32 | 63 | 95 | 126 | 158 | 189 | 221 | 252 | 284 | 315 | | level | 15% | 5 | 9 | 24 | 47 | 95 | 142 | 189 | 236 | 284 | 331 | 378 | 425 | 473 | | | 20% | 6 | 13 | 32 | 63 | 126 | 189 | 252 | 315 | 378 | 441 | 504 | 567 | 630 | | ent | 25% | 8 | 16 | 39 | 79 | 158 | 236 | 315 | 394 | 473 | 551 | 630 | 709 | 788 | | e
di | 30% | 9 | 19 | 47 | 95 | 189 | 284 | 378 | 473 | 567 | 662 | 756 | 851 | 945 | | Displacem
t risk of di | 35% | 11 | 22 | 55 | 110 | 221 | 331 |
441 | 551 | 662 | 772 | 882 | 993 | 1103 | | ispla
risk | 40% | 13 | 25 | 63 | 126 | 252 | 378 | 504 | 630 | 756 | 882 | 1008 | 1135 | 1261 | | at D | 60% | 19 | 38 | 95 | 189 | 378 | 567 | 756 | 945 | 1135 | 1324 | 1513 | 1702 | 1891 | | %) | 80% | 25 | 50 | 126 | 252 | 504 | 756 | 1008 | 1261 | 1513 | 1765 | 2017 | 2269 | 2521 | | | 100% | 32 | 63 | 158 | 315 | 630 | 945 | 1261 | 1576 | 1891 | 2206 | 2521 | 2836 | 3151 | Table C. 4: UCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Guiller | not
reeding | | | | | (% of d | M
isplaced | ortality
birds a | | mortalit | y) | | | | |----------------------------|----------------|----|----|-----|-----|---------|---------------|---------------------|------|----------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 4 | 9 | 22 | 44 | 89 | 133 | 177 | 222 | 266 | 310 | 355 | 399 | 443 | | level | 15% | 7 | 13 | 33 | 66 | 133 | 199 | 266 | 332 | 399 | 465 | 532 | 598 | 665 | | | 20% | 9 | 18 | 44 | 89 | 177 | 266 | 355 | 443 | 532 | 621 | 709 | 798 | 887 | | ent | 25% | 11 | 22 | 55 | 111 | 222 | 332 | 443 | 554 | 665 | 776 | 887 | 997 | 1108 | | em
f di | 30% | 13 | 27 | 66 | 133 | 266 | 399 | 532 | 665 | 798 | 931 | 1064 | 1197 | 1330 | | lace
k of | 35% | 16 | 31 | 78 | 155 | 310 | 465 | 621 | 776 | 931 | 1086 | 1241 | 1396 | 1551 | | Displacem
It risk of di | 40% | 18 | 35 | 89 | 177 | 355 | 532 | 709 | 887 | 1064 | 1241 | 1418 | 1596 | 1773 | | at D | 60% | 27 | 53 | 133 | 266 | 532 | 798 | 1064 | 1330 | 1596 | 1862 | 2128 | 2394 | 2660 | | %) | 80% | 35 | 71 | 177 | 355 | 709 | 1064 | 1418 | 1773 | 2128 | 2482 | 2837 | 3192 | 3546 | | | 100% | 44 | 89 | 222 | 443 | 887 | 1330 | 1773 | 2216 | 2660 | 3103 | 3546 | 3989 | 4433 | Table C. 5: LCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (operation). | Guillen
Breedi | | | | | | (% of d | M
isplaced | ortality
birds a | | mortalit | y) | | | | |-------------------|------|----|----|-----|-----|---------|---------------|---------------------|------|----------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 7 | 17 | 34 | 68 | 103 | 137 | 171 | 205 | 240 | 274 | 308 | 342 | | level | 20% | 7 | 14 | 34 | 68 | 137 | 205 | 274 | 342 | 411 | 479 | 548 | 616 | 685 | | | 30% | 10 | 21 | 51 | 103 | 205 | 308 | 411 | 514 | 616 | 719 | 822 | 924 | 1027 | | ent | 40% | 14 | 27 | 68 | 137 | 274 | 411 | 548 | 685 | 822 | 959 | 1096 | 1233 | 1369 | | | 50% | 17 | 34 | 86 | 171 | 342 | 514 | 685 | 856 | 1027 | 1198 | 1369 | 1541 | 1712 | | lace
k of | 60% | 21 | 41 | 103 | 205 | 411 | 616 | 822 | 1027 | 1233 | 1438 | 1643 | 1849 | 2054 | | ispla
risk | 70% | 24 | 48 | 120 | 240 | 479 | 719 | 959 | 1198 | 1438 | 1678 | 1917 | 2157 | 2397 | | | 80% | 27 | 55 | 137 | 274 | 548 | 822 | 1096 | 1369 | 1643 | 1917 | 2191 | 2465 | 2739 | | %) | 90% | 31 | 62 | 154 | 308 | 616 | 924 | 1233 | 1541 | 1849 | 2157 | 2465 | 2773 | 3081 | | | 100% | 34 | 68 | 171 | 342 | 685 | 1027 | 1369 | 1712 | 2054 | 2397 | 2739 | 3081 | 3424 | Table C. 6: UCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the breeding season (operation). | Guiller | not | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | у) | | | | |---------------------------|------|----|-----|-----|-----|---------|------|---------------------|--------------------|----------|------|------|------|------| | Breedi | ing | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 5 | 10 | 26 | 51 | 102 | 153 | 205 | 256 | 307 | 358 | 409 | 460 | 511 | | level | 20% | 10 | 20 | 51 | 102 | 205 | 307 | 409 | 511 | 614 | 716 | 818 | 920 | 1023 | | | 30% | 15 | 31 | 77 | 153 | 307 | 460 | 614 | 767 | 920 | 1074 | 1227 | 1381 | 1534 | | ment | 40% | 20 | 41 | 102 | 205 | 409 | 614 | 818 | 1023 | 1227 | 1432 | 1636 | 1841 | 2045 | | em
f di | 50% | 26 | 51 | 128 | 256 | 511 | 767 | 1023 | 1278 | 1534 | 1790 | 2045 | 2301 | 2557 | | ace
k of | 60% | 31 | 61 | 153 | 307 | 614 | 920 | 1227 | 1534 | 1841 | 2147 | 2454 | 2761 | 3068 | | Displacem
t risk of di | 70% | 36 | 72 | 179 | 358 | 716 | 1074 | 1432 | 1790 | 2147 | 2505 | 2863 | 3221 | 3579 | | at D | 80% | 41 | 82 | 205 | 409 | 818 | 1227 | 1636 | 2045 | 2454 | 2863 | 3272 | 3681 | 4090 | | %) | 90% | 46 | 92 | 230 | 460 | 920 | 1381 | 1841 | 2301 | 2761 | 3221 | 3681 | 4142 | 4602 | | | 100% | 51 | 102 | 256 | 511 | 1023 | 1534 | 2045 | 2557 | 3068 | 3579 | 4090 | 4602 | 5113 | Table C. 7: LCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operation). | Guiller | not | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | у) | | | | |----------------------------|-------|----|----|-----|-----|---------|-----|---------------------|--------------------|----------|------|------|------|------| | | ocumg | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 6 | 16 | 32 | 63 | 95 | 126 | 158 | 189 | 221 | 252 | 284 | 315 | | level | 20% | 6 | 13 | 32 | 63 | 126 | 189 | 252 | 315 | 378 | 441 | 504 | 567 | 630 | | | 30% | 9 | 19 | 47 | 95 | 189 | 284 | 378 | 473 | 567 | 662 | 756 | 851 | 945 | | ent | 40% | 13 | 25 | 63 | 126 | 252 | 378 | 504 | 630 | 756 | 882 | 1008 | 1135 | 1261 | | em
f di | 50% | 16 | 32 | 79 | 158 | 315 | 473 | 630 | 788 | 945 | 1103 | 1261 | 1418 | 1576 | | Displacem
It risk of di | 60% | 19 | 38 | 95 | 189 | 378 | 567 | 756 | 945 | 1135 | 1324 | 1513 | 1702 | 1891 | | ispla
risk | 70% | 22 | 44 | 110 | 221 | 441 | 662 | 882 | 1103 | 1324 | 1544 | 1765 | 1985 | 2206 | | at 🖂 | 80% | 25 | 50 | 126 | 252 | 504 | 756 | 1008 | 1261 | 1513 | 1765 | 2017 | 2269 | 2521 | | %) | 90% | 28 | 57 | 142 | 284 | 567 | 851 | 1135 | 1418 | 1702 | 1985 | 2269 | 2553 | 2836 | | | 100% | 32 | 63 | 158 | 315 | 630 | 945 | 1261 | 1576 | 1891 | 2206 | 2521 | 2836 | 3151 | Table C. 8: UCI predicted common guillemot mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operation). | Guille | not
reeding | | | | | (% of d | Mo
isplaced | ortality l
birds a | | mortalit | y) | | | | |-----------------------------|----------------|----|----|-----|-----|---------|----------------|-----------------------|------|----------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 4 | 9 | 22 | 44 | 89 | 133 | 177 | 222 | 266 | 310 | 355 | 399 | 443 | | level | 20% | 9 | 18 | 44 | 89 | 177 | 266 | 355 | 443 | 532 | 621 | 709 | 798 | 887 | | ace | 30% | 13 | 27 | 66 | 133 | 266 | 399 | 532 | 665 | 798 | 931 | 1064 | 1197 | 1330 | | ent
spl | 40% | 18 | 35 | 89 | 177 | 355 | 532 | 709 | 887 | 1064 | 1241 | 1418 | 1596 | 1773 | | em
f di | 50% | 22 | 44 | 111 | 222 | 443 | 665 | 887 | 1108 | 1330 | 1551 | 1773 | 1995 | 2216 | | Displacem
It risk of di | 60% | 27 | 53 | 133 | 266 | 532 | 798 | 1064 | 1330 | 1596 | 1862 | 2128 | 2394 | 2660 | | ispla
risk | 70% | 31 | 62 | 155 | 310 | 621 | 931 | 1241 | 1551 | 1862 | 2172 | 2482 | 2793 | 3103 | | at D | 80% | 35 | 71 | 177 | 355 | 709 | 1064 | 1418 | 1773 | 2128 | 2482 | 2837 | 3192 | 3546 | | %) | 90% | 40 | 80 | 199 | 399 | 798 | 1197 | 1596 | 1995 | 2394 | 2793 | 3192 | 3590 | 3989 | | | 100% | 44 | 89 | 222 | 443 | 887 | 1330 | 1773 | 2216 | 2660 | 3103 | 3546 | 3989 | 4433 | ## C.2 Razorbill Table C. 9: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Razori | | | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | y) | | | | |---------------------------|-----------|----|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|------|------|------| | Spring | migration | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 3 | 7 | 13 | 27 | 40 | 53 | 66 | 80 | 93 | 106 | 119 | 133 | | level | 15% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 99 | 119 | 139 | 159 | 179 | 199 | | <u>ac</u> | 20% | 3 | 5 | 13 | 27 | 53 | 80 | 106 | 133 | 159 | 186 | 212 | 239 | 265 | | ment level
displacem | 25% | 3 | 7 | 17 | 33 | 66 | 99 | 133 | 166 | 199 | 232 | 265 | 298 | 331 | | em
di | 30% | 4 | 8 | 20 | 40 | 80 | 119 | 159 | 199 | 239 | 278 | 318 | 358 | 398 | | Displacem
t risk of di | 35% | 5 | 9 | 23 | 46 | 93 | 139 | 186 | 232 | 278 | 325 | 371 | 418 | 464 | | ispla
risk | 40% | 5 | 11 | 27 | 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 | 530 | | at Di | 60% | 8 | 16 | 40 | 80 | 159 | 239 | 318 | 398 | 477 | 557 | 636 | 716 | 795 | | %) | 80% | 11 | 21 | 53 | 106 | 212 | 318 | 424 | 530 | 636 | 742 | 848 | 954 | 1060 | | | 100% | 13 | 27 | 66 | 133 | 265 | 398 | 530 | 663 | 795 | 928 | 1060 | 1193 | 1326 | Table C. 10: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Razori | | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | у) | | | | |-----------------------------|-----------|----|----|-----|-----|---------|-----|---------------------|--------------------|----------|------|------|------|------| | | migration | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 3 | 5 | 13 | 26 | 53 | 79 | 106 | 132 | 159 | 185 | 212 | 238 | 265 | | level | 15% | 4 | 8 | 20 | 40 | 79 | 119 | 159 | 199 | 238 | 278 | 318 | 358 | 397 | | ace | 20% | 5 | 11 | 26 | 53 | 106 | 159 | 212 | 265
 318 | 371 | 424 | 477 | 530 | | ent
spla | 25% | 7 | 13 | 33 | 66 | 132 | 199 | 265 | 331 | 397 | 463 | 530 | 596 | 662 | | em
f di | 30% | 8 | 16 | 40 | 79 | 159 | 238 | 318 | 397 | 477 | 556 | 636 | 715 | 795 | | Displacem
t risk of di | 35% | 9 | 19 | 46 | 93 | 185 | 278 | 371 | 463 | 556 | 649 | 742 | 834 | 927 | | ispla
risk | 40% | 11 | 21 | 53 | 106 | 212 | 318 | 424 | 530 | 636 | 742 | 848 | 953 | 1059 | | | 60% | 16 | 32 | 79 | 159 | 318 | 477 | 636 | 795 | 953 | 1112 | 1271 | 1430 | 1589 | | %) | 80% | 21 | 42 | 106 | 212 | 424 | 636 | 848 | 1059 | 1271 | 1483 | 1695 | 1907 | 2119 | | | 100% | 26 | 53 | 132 | 265 | 530 | 795 | 1059 | 1324 | 1589 | 1854 | 2119 | 2384 | 2649 | Table C. 11: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Razorbill
Breeding | | | | | | (% of d | | lortality
I birds a | level
t risk of | mortalit | у) | | | | |-----------------------------|------|----|----|----|-----|---------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | level | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | | 1 <u>e</u> | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | | ent
spla | 25% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 | 7 | | em
f di | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | Displacem
t risk of di | 35% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | isplarisk | 40% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | at E | 60% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 15 | 17 | | %) | 80% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 | 23 | | | 100% | 0 | 1 | 1 | 3 | 6 | 9 | 11 | 14 | 17 | 20 | 23 | 26 | 28 | Table C. 12: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Razorbil
Breeding | | | | | | (% of d | | lortality
I birds a | level
t risk of | mortalit | у) | | | | |----------------------|------|----|----|----|-----|---------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 11 | 13 | 15 | 16 | | level | 15% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | | | 20% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 16 | 20 | 23 | 26 | 30 | 33 | | ent
spla | 25% | 0 | 1 | 2 | 4 | 8 | 12 | 16 | 20 | 25 | 29 | 33 | 37 | 41 | | | 30% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 34 | 39 | 44 | 49 | | lace
k of | 35% | 1 | 1 | 3 | 6 | 11 | 17 | 23 | 29 | 34 | 40 | 46 | 52 | 57 | | Displac | 40% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 52 | 59 | 66 | | at D | 60% | 1 | 2 | 5 | 10 | 20 | 30 | 39 | 49 | 59 | 69 | 79 | 89 | 98 | | %) | 80% | 1 | 3 | 7 | 13 | 26 | 39 | 52 | 66 | 79 | 92 | 105 | 118 | 131 | | | 100% | 2 | 3 | 8 | 16 | 33 | 49 | 66 | 82 | 98 | 115 | 131 | 148 | 164 | Table C. 13: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Razork | oill
n migrat | ion | (% of c | Mortali
Iisplaced | ty level
d birds a | t risk of | mortali | ty) | | | | | | | |-----------------------------|------------------|-----|---------|----------------------|-----------------------|-----------|---------|-----|-----|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | level | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | | ace | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | ent | 25% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 7 | | Displacem
t risk of di | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | | lace
k of | 35% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | ispla
risk | 40% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | | | 60% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | 18 | | %) | 80% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 19 | 21 | 23 | | | 100% | 0 | 1 | 1 | 3 | 6 | 9 | 12 | 15 | 18 | 20 | 23 | 26 | 29 | Table C. 14: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Razorbill
Autumn | | n | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |-----------------------------|------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | level | 15% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 16 | 20 | 23 | 26 | 30 | 33 | | | 20% | 0 | 1 | 2 | 4 | 9 | 13 | 18 | 22 | 26 | 31 | 35 | 40 | 44 | | ent | 25% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 55 | | | 30% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | lace
k of | 35% | 1 | 2 | 4 | 8 | 15 | 23 | 31 | 38 | 46 | 54 | 61 | 69 | 77 | | isplarisk | 40% | 1 | 2 | 4 | 9 | 18 | 26 | 35 | 44 | 53 | 61 | 70 | 79 | 88 | | | 60% | 1 | 3 | 7 | 13 | 26 | 40 | 53 | 66 | 79 | 92 | 105 | 119 | 132 | | %) | 80% | 2 | 4 | 9 | 18 | 35 | 53 | 70 | 88 | 105 | 123 | 141 | 158 | 176 | | | 100% | 2 | 4 | 11 | 22 | 44 | 66 | 88 | 110 | 132 | 154 | 176 | 198 | 220 | Table C. 15: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Razori | oill | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |--|------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | Displacement level
rt risk of displacement) | 10% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | | 15% | 0 | 1 | 2 | 4 | 8 | 11 | 15 | 19 | 23 | 26 | 30 | 34 | 38 | | | 20% | 1 | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | | 25% | 1 | 1 | 3 | 6 | 13 | 19 | 25 | 31 | 38 | 44 | 50 | 57 | 63 | | | 30% | 1 | 2 | 4 | 8 | 15 | 23 | 30 | 38 | 45 | 53 | 60 | 68 | 75 | | | 35% | 1 | 2 | 4 | 9 | 18 | 26 | 35 | 44 | 53 | 62 | 70 | 79 | 88 | | ispla
risk | 40% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 91 | 101 | | - O | 60% | 2 | 3 | 8 | 15 | 30 | 45 | 60 | 75 | 91 | 106 | 121 | 136 | 151 | | %) | 80% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 101 | 121 | 141 | 161 | 181 | 201 | | | 100% | 3 | 5 | 13 | 25 | 50 | 75 | 101 | 126 | 151 | 176 | 201 | 226 | 252 | Table C. 16: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Razori | oill | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | ty) | | | | |---------------|------|----|----|----|-----|---------|-----|---------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 83 | | level | 15% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | | | 20% | 2 | 3 | 8 | 17 | 33 | 50 | 67 | 83 | 100 | 116 | 133 | 150 | 166 | | ent | 25% | 2 | 4 | 10 | 21 | 42 | 62 | 83 | 104 | 125 | 145 | 166 | 187 | 208 | | | 30% | 2 | 5 | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 224 | 249 | | lace
k of | 35% | 3 | 6 | 15 | 29 | 58 | 87 | 116 | 145 | 175 | 204 | 233 | 262 | 291 | | ispla
risk | 40% | 3 | 7 | 17 | 33 | 67 | 100 | 133 | 166 | 200 | 233 | 266 | 299 | 333 | | at D | 60% | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 249 | 299 | 349 | 399 | 449 | 499 | | %) | 80% | 7 | 13 | 33 | 67 | 133 | 200 | 266 | 333 | 399 | 466 | 532 | 599 | 665 | | | 100% | 8 | 17 | 42 | 83 | 166 | 249 | 333 | 416 | 499 | 582 | 665 | 748 | 831 | Table C. 17: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Spring migration (operation). | Razorb | | | | | | (% of d | | ortality
I birds a | level
t risk of | mortalit | y) | | | | |---------------------------|-----------|----|----|----|-----|---------|-----|-----------------------|--------------------|----------|-----|------|------|-------| | Spring | migration | | | | | | | | | | | | | 1000/ | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 3 | 7 | 13 | 27 | 40 | 53 | 66 | 80 | 93 | 106 | 119 | 133 | | level | 20% | 3 | 5 | 13 | 27 | 53 | 80 | 106 | 133 | 159 | 186 | 212 | 239 | 265 | | ac ac | 30% | 4 | 8 | 20 | 40 | 80 | 119 | 159 | 199 | 239 | 278 | 318 | 358 | 398 | | ment level
displacem | 40% | 5 | 11 | 27 | 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 | 530 | | em
di | 50% | 7 | 13 | 33 | 66 | 133 | 199 | 265 | 331 | 398 | 464 | 530 | 597 | 663 | | Displacem
t risk of di | 60% | 8 | 16 | 40 | 80 | 159 | 239 | 318 | 398 | 477 | 557 | 636 | 716 | 795 | | ispla
risk | 70% | 9 | 19 | 46 | 93 | 186 | 278 | 371 | 464 | 557 | 650 | 742 | 835 | 928 | | at 🗖 | 80% | 11 | 21 | 53 | 106 | 212 | 318 | 424 | 530 | 636 | 742 | 848 | 954 | 1060 | | %) | 90% | 12 | 24 | 60 | 119 | 239 | 358 | 477 | 597 | 716 | 835 | 954 | 1074 | 1193 | | | 100% | 13 | 27 | 66 | 133 | 265 | 398 | 530 | 663 | 795 | 928 | 1060 | 1193 | 1326 | Table C. 18: UCI predicted razorbill mortality for the Mona Array Area
plus 2 km buffer during Spring migration (operation). | Razorb | ill | | | | | (% of d | | ortality
I birds a | level
t risk of | mortalit | y) | | | | |---------------------------|---------|----|----|-----|-----|---------|-----|-----------------------|--------------------|----------|------|------|------|------| | Spring | migrati | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 5 | 13 | 26 | 53 | 79 | 106 | 132 | 159 | 185 | 212 | 238 | 265 | | | 20% | 5 | 11 | 26 | 53 | 106 | 159 | 212 | 265 | 318 | 371 | 424 | 477 | 530 | | | 30% | 8 | 16 | 40 | 79 | 159 | 238 | 318 | 397 | 477 | 556 | 636 | 715 | 795 | | ment
displ | 40% | 11 | 21 | 53 | 106 | 212 | 318 | 424 | 530 | 636 | 742 | 848 | 953 | 1059 | | em
di | 50% | 13 | 26 | 66 | 132 | 265 | 397 | 530 | 662 | 795 | 927 | 1059 | 1192 | 1324 | | lace
k of | 60% | 16 | 32 | 79 | 159 | 318 | 477 | 636 | 795 | 953 | 1112 | 1271 | 1430 | 1589 | | Displacem
t risk of di | 70% | 19 | 37 | 93 | 185 | 371 | 556 | 742 | 927 | 1112 | 1298 | 1483 | 1669 | 1854 | | at at | 80% | 21 | 42 | 106 | 212 | 424 | 636 | 848 | 1059 | 1271 | 1483 | 1695 | 1907 | 2119 | | %) | 90% | 24 | 48 | 119 | 238 | 477 | 715 | 953 | 1192 | 1430 | 1669 | 1907 | 2145 | 2384 | | | 100% | 26 | 53 | 132 | 265 | 530 | 795 | 1059 | 1324 | 1589 | 1854 | 2119 | 2384 | 2649 | Table C. 19: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the breeding season (operation). | Razorb
Breedin | | | | | | (% of di | | ortality le
birds at | evel
risk of | mortality | /) | | | | |---------------------------------|------|----|----|----|-----|----------|-----|-------------------------|-----------------|-----------|------------|-----|-----|------| | | 9 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | level | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | | 10 | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | Displacement
t risk of displ | 40% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | e di | 50% | 0 | 0 | 1 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 13 | 14 | | lace
k of | 60% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 15 | 17 | | ispla
risk | 70% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | O | 80% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 | 23 | | %) | 90% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 26 | | | 100% | 0 | 1 | 1 | 3 | 6 | 9 | 11 | 14 | 17 | 20 | 23 | 26 | 28 | Table C. 20: UCI predicted razorbill mortality for the Mona Array Area 2 km buffer during the breeding season (operation). | Razorb
Breedin | | | | | | (% of d | | lortality
I birds a | level
at risk of | mortalit | у) | | | | |--------------------------|------|----|----|----|-----|----------------|-----|------------------------|---------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent level
splacement) | 10% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 11 | 13 | 15 | 16 | | level | 20% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 16 | 20 | 23 | 26 | 30 | 33 | | 1 <u>e</u> | 30% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 34 | 39 | 44 | 49 | | | 40% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 52 | 59 | 66 | | Displacemetrisk of di | 50% | 1 | 2 | 4 | 8 | 16 | 25 | 33 | 41 | 49 | 57 | 66 | 74 | 82 | | lace
k of | 60% | 1 | 2 | 5 | 10 | 20 | 30 | 39 | 49 | 59 | 69 | 79 | 89 | 98 | | isplarisk | 70% | 1 | 2 | 6 | 11 | 23 | 34 | 46 | 57 | 69 | 80 | 92 | 103 | 115 | | σ | 80% | 1 | 3 | 7 | 13 | 26 | 39 | 52 | 66 | 79 | 92 | 105 | 118 | 131 | | %) | 90% | 1 | 3 | 7 | 15 | 30 | 44 | 59 | 74 | 89 | 103 | 118 | 133 | 148 | | | 100% | 2 | 3 | 8 | 16 | 33 | 49 | 66 | 82 | 98 | 115 | 131 | 148 | 164 | Table C. 21: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operation). | Razorb
Autumr | | tion | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | y) | | | | |---------------------------------|------|------|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | level | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | | Displacement
t risk of displ | 40% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | 12 | | e ii | 50% | 0 | 0 | 1 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 | 15 | | lace
k of | 60% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 | 18 | | ispla
risk | 70% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | | σ | 80% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 12 | 14 | 16 | 19 | 21 | 23 | | %) | 90% | 0 | 1 | 1 | 3 | 5 | 8 | 11 | 13 | 16 | 18 | 21 | 24 | 26 | | | 100% | 0 | 1 | 1 | 3 | 6 | 9 | 12 | 15 | 18 | 20 | 23 | 26 | 29 | Table C. 22: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operation). | Razorb
Autumr | | tion | | | | (% of d | | ortality
birds a | | mortalit | y) | | | | |-------------------|-------|------|----|----|-----|---------|-----|---------------------|-----|----------|-----|-----|-----|------| | | migra | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | level | 20% | 0 | 1 | 2 | 4 | 9 | 13 | 18 | 22 | 26 | 31 | 35 | 40 | 44 | | <u>ac</u> | 30% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | ment
displa | 40% | 1 | 2 | 4 | 9 | 18 | 26 | 35 | 44 | 53 | 61 | 70 | 79 | 88 | | cem
of di | 50% | 1 | 2 | 5 | 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | | lace
k of | 60% | 1 | 3 | 7 | 13 | 26 | 40 | 53 | 66 | 79 | 92 | 105 | 119 | 132 | | Displac | 70% | 2 | 3 | 8 | 15 | 31 | 46 | 61 | 77 | 92 | 108 | 123 | 138 | 154 | | 0 | 80% | 2 | 4 | 9 | 18 | 35 | 53 | 70 | 88 | 105 | 123 | 141 | 158 | 176 | | %) | 90% | 2 | 4 | 10 | 20 | 40 | 59 | 79 | 99 | 119 | 138 | 158 | 178 | 198 | | | 100% | 2 | 4 | 11 | 22 | 44 | 66 | 88 | 110 | 132 | 154 | 176 | 198 | 220 | Table C. 23: LCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operation). | Razorb | | | | | | (% of di | Mo
splaced | ortality l
birds at | | mortalit | y) | | | | |-------------------|------|----|----|----|-----|----------|---------------|------------------------|-----|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | level | 20% | 1 | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | | 30% | 1 | 2 | 4 | 8 | 15 | 23 | 30 | 38 | 45 | 53 | 60 | 68 | 75 | | ment
displa | 40% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 91 | 101 | | | 50% | 1 | 3 | 6 | 13 | 25 | 38 | 50 | 63 | 75 | 88 | 101 | 113 | 126 | | lace
k of | 60% | 2 | 3 | 8 | 15 | 30 | 45 | 60 | 75 | 91 | 106 | 121 | 136 | 151 | | ispla
risk | 70% | 2 | 4 | 9 | 18 | 35 | 53 | 70 | 88 | 106 | 123 | 141 | 158 | 176 | | | 80% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 101 | 121 | 141 | 161 | 181 | 201 | | %) | 90% | 2 | 5 | 11 | 23 | 45 | 68 | 91 | 113 | 136 | 158 | 181 | 204 | 226 | | | 100% | 3 | 5 | 13 | 25 | 50 | 75 | 101 | 126 | 151 | 176 | 201 | 226 | 252 | Table C. 24: UCI predicted razorbill mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operation). | Razorb | | | | | | (% of d | | ortality
I birds a | level
t risk of | mortalit | y) | | | | |---------------|--------|----|----|----|-----|---------|-----|-----------------------|--------------------|----------|-----|-----|-----|------| | | Joanny | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 83 | | level | 20% | 2 | 3 | 8 | 17 | 33 | 50 | 67 | 83 | 100 | 116 | 133 | 150 | 166 | | | 30% | 2 | 5 | 12 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 224 | 249 | | ent | 40% | 3 | 7 | 17 | 33 | 67 | 100 | 133 | 166 | 200 | 233 | 266 | 299 | 333 | | | 50% | 4 | 8 | 21 | 42 | 83 | 125 | 166 | 208 | 249 | 291 | 333 | 374 | 416 | | lace
k of | 60% | 5 | 10 | 25 | 50 | 100 | 150 | 200 | 249 | 299 | 349 | 399 | 449 | 499 | | ispla
risk | 70% | 6 | 12 | 29 | 58 | 116 | 175 | 233 | 291 | 349 | 407 | 466 | 524 | 582 | | - O | 80% | 7 | 13 | 33 | 67 | 133 | 200 | 266 | 333 | 399 | 466 | 532 | 599 | 665 | | %) | 90% | 7 | 15 | 37 | 75 | 150 | 224 | 299 | 374 | 449 | 524 | 599 | 673 | 748 | | | 100% | 8 | 17 | 42 | 83 | 166 | 249 | 333 | 416 | 499 | 582 | 665 | 748 | 831 | # C.3 Atlantic puffin Table C. 25: LCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Puffin
Breedi | ng | | | | (% of d | isplaced | Mortalit
I birds a | • | mortalit | ty) | | | | | |-----------------------------|------|----|----|----|---------|----------|-----------------------|-----|----------|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
di | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
t risk of di | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at 🖂 | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 26: UCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Puffin | | | | | (% of d | lisplaced | | ty level
It risk of | mortali | ty) | | | | | |-----------------------------|------|----|----|----|---------|-----------|-----|------------------------|---------|-----|-----|-----|-----|------| | Breed | ing | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | level | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | <u>e</u> | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 6 | | ment level
displacement) | 25% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | | ace
k of | 35% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 11 | | ispla
risk | 40% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 13 | | at Di | 60% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 9 | 11 | 13 | 15 | 17 | 19 | | %) | 80% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | | 100% | 0 | 1 | 2 | 3 | 6 | 9 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | Table C. 27: LCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | uffin | | | | | | | Morta | lity level | | | | | | | |---------------------------------|---|---------------------------------|----------------------------------|----------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------|----------------------|------------------------|-----------------------------------|-----------------------------------|---| | | | | | | (% of | displace | | | of mortal | ity) | | | | | | lon-b | reeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | acem | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
at risk of disp | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | er
f | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ik o | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ris | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 000/ | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 80% | | | | _ | _ | _ | _ | _ | | _ | _ | | | | | 100% | 0 | 0 | 0 | 0 | 0 | 00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ≗
Puffin | 100% | | 0 | 0 | 0 | ļo
I | М | ortality | level | | | 0 | 0 | 00 | | | 100% | | 0 | 0 | 0 | ļo
I | М | ortality | | | | 0 | 0 | 0 | | Puffin | 100% | | 0 | 0 | | (% of di | М | ortality
I birds a | level | | ty) | V | 0 | 0 | | Puffin | 100% | 1% | 2% | 5% | 10% | (% of di | M
isplaced | ortality
I birds a | level
t risk of | mortali | ty)
70% | 80% | 90% | 100% | | Puffin | 100%
preeding
10% | 1%
0 | 2% | 5% | 10% | (% of di 20% 0 | M
splaced | ortality
I birds a | level
t risk of
50% | 60% | 70% | 80% | V | | | Puffin
Non-b | 100% | 1%
0
0 | 2% | 5% 0 0 | 10% | (% of di | M
isplaced | ortality
I birds a | level It risk of 50% 0 0 | mortali | ty)
70% | 80% | 90% | 100% | | Puffin
Non-b | 100%
oreeding
10%
15%
20% | 1%
0 | 2% 0 0 0 | 5% 0 0 0 | 10%
0
0 | (% of di 20% 0 | Misplaced 30% | ortality I birds a 40% | level
t risk of
50% | 60% | 70% | 80% | 90% | 100% | | Puffin
Non-b | 100%
reeding
10%
15%
20%
25% | 1%
0
0
0
0 | 2% 0 0 | 5%
0
0
0 | 10% 0 0 | (% of di
20%
0 | Misplaced 30% 0 0 | ortality I birds a 40% 0 0 | level It risk of 50% 0 0 | 60% 0 0 | 70% | 80% | 90% | 100% | | Puffin
Non-b | 100%
oreeding
10%
15%
20% | 1%
0
0
0 | 2% 0 0 0 | 5% 0 0 0 | 10%
0
0 | 20% 0 0 0 | 30%
0
0
0 | ortality l birds a 40% 0 0 0 | | 60% 0 0 0 | 70% | 80% | 90% | 100% | | Puffin
Non-b | 100%
reeding
10%
15%
20%
25% | 1%
0
0
0
0 | 2% 0 0 0 0 | 5%
0
0
0 | 10%
0
0
0 | (% of di
20% 0 0 0 0 | 30%
0
0
0
0 | ortality l birds a 40% 0 0 0 0 | | 60% 0 0 0 1 | 70% | 80% | 90% | 100% | | Puffin | 100%
oreeding
10%
15%
20%
25%
30% | 1%
0
0
0
0 | 2% 0 0 0 0 0 | 5%
0
0
0
0 | 10%
0
0
0
0 | (% of di
20%
0
0
0
0 | 30%
0
0
0
0
0 | ortality l birds a 40% 0 0 0 0 | | 60% 0 0 1 | 70% | 80% | 90% | 100% | | Puffin | 100% reeding 10% 15% 20% 25% 30% 35% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 10%
0
0
0
0
0 | (% of di
20% 0 0 0 0 0 0 | 30%
0
0
0
0
0
0 | ortality I birds a 40% 0 0 0 0 1 | | 60% 0 0 0 1 1 | 70% | 80%
0
0
1
1
1
1 | 90%
0
1
1
1
1 | 100%
0
1
1
1
1 | | Puffin | 100%
10%
15%
20%
25%
30%
35%
40% | 0
0
0
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0
0
0
0 | (% of di
20% 0 0 0 0 0 0 0 | 30%
0
0
0
0
0
0 | ortality l birds a 40% 0 0 0 0 1 | | 60% 0 0 1 1 1 | 70% 0 0 1 1 1 1 | 80%
0
0
1
1
1
1 | 90%
0
1
1
1
1
1 | 100%
0
1
1
1
1
1
2 | Table C. 28: UCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (construction and decommissioning). | Puffin | | | | | (% of | displace | | lity level
at risk c | | ity) | | | | | |---------------------------------|---|-----------------------------|----------------------------------|----------------------------------|--|--|-----------------------------------|---------------------------------------|--|--------------------|---------------------|-------------------------------------|-------------------------------------|---| | Non-b | reeding | | | | | | | | | | | | | | | | - | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | acem | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
at risk of disp | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Sen
of d | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | sk c | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ris | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | | | | 100% | 0 | 0 | 0
| 0 | 0 | | 0
ortality | | 0 | 0 | 0 | 0 | 0 | | Puffin | | 0 | 0 | 0 | 0 | | М | ortality | | | <u> </u> | 0 | <u>[</u> 0 | 0 | | Puffin | | 0
1% | 2 % | 5 % | 10% | | М | ortality | level
t risk of
50% | | <u> </u> | 80% | 90% | | | Puffin | | | | | | (% of di | M
splaced | ortality
I birds a | level
t risk of | mortali | ty) | | | | | Puffin | reeding | 1% | 2% | 5% | 10% | (% of di | M
isplaced | ortality
I birds a | level
t risk of
50% | mortali | ty)
70% | 80% | 90% | 100% | | Puffin | reeding | 1% | 2% | 5% | 10% | (% of di
20% | Misplaced | ortality I birds a | 50%
2
3
4 | mortali 60% | 70% | 80% | 90% 4 | 100 % | | Puffin
Non-b | reeding
10%
15% | 1% 0 0 | 2% 0 0 | 5% 0 0 | 10%
0 | (% of di
20% | 30%
1
2 | ortality l birds a 40% 2 2 | Second S | 60% 2 4 | 70% 3 4 | 80% 3 5 | 90% 4 5 | 100%
4
6 | | Puffin
Non-b | 10%
15%
20% | 1%
0
0 | 2% 0 0 0 | 5% 0 0 | 10%
0
1 | (% of di
20% 1 1 2 | 30%
1
2
2 | ortality l birds a 40% 2 2 3 | 50%
2
3
4 | 60% 2 4 5 | 70% 3 4 6 | 80% 3 5 6 | 90% 4 5 7 | 100%
4
6
8 | | Puffin | 10%
15%
20%
25% | 1%
0
0
0 | 2% 0 0 0 0 | 5% 0 0 | 10%
0
1
1 | (% of di
20% 1 1 2 2 | 30%
1
2
2
3 | ortality l birds a 40% 2 2 2 3 4 | Second S | 60% 2 4 5 6 | 70% 3 4 6 7 | 80% 3 5 6 | 90%
4
5
7
9 | 100%
4
6
8
10 | | Puffin | 10%
15%
20%
25%
30% | 1%
0
0
0
0 | 2%
0
0
0
0 | 5% 0 0 | 10%
0
1
1
1 | (% of di
20%
1
1
2
2
2 | 30%
1
2
2
3
4 | ortality birds a 40% 2 2 3 4 | 50%
2
3
4
5
6 | 60% 2 4 5 6 | 70% 3 4 6 7 | 80%
3
5
6
8
10 | 90%
4
5
7
9 | 100%
4
6
8
10
12 | | Puffin | 10%
15%
20%
25%
30%
35% | 1%
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
1
1 | 10%
0
1
1
1
1 | (% of di
20% 1 1 2 2 2 2 3 | 30%
1
2
2
3
4
4 | ortality l birds a 40% 2 2 2 3 4 5 6 | 50% 2 3 4 5 6 7 | 60% 2 4 5 6 7 | 70% 3 4 6 7 8 10 | 80%
3
5
6
8
10 | 90%
4
5
7
9
11 | 100%
4
6
8
10
12
14 | | Puffin | 10%
15%
20%
25%
30%
35%
40% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
1
1
1 | 10%
0
1
1
1
1
1
2 | (% of di
20% 1 1 2 2 2 3 3 | 30% 1 2 2 3 4 4 5 | ortality birds a 40% 2 2 3 4 5 6 | 50% 2 3 4 5 6 7 | 60% 2 4 5 6 7 8 10 | 70% 3 4 6 7 8 10 11 | 80%
3
5
6
8
10
11 | 90%
4
5
7
9
11
13 | 100%
4
6
8
10
12
14
16 | Table C. 29: LCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Puffin | | | | | | (% of d | M
isplaced | ortality
birds a | | mortalit | y) | | | | |----------------------------|------|----|----|----|-----|---------|---------------|---------------------|-----|----------|-----|-----|-----|------| | Breed | ing | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | e
G | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
It risk of di | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at D | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 30: UCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Puffin
Breedi | na | | | | | (% of di | | ortality
birds a | level
t risk of | mortalit | у) | | | | |-----------------------------|------|----|----|----|-----|----------|-----|---------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | level | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 6 | | ace | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 8 | 9 | | ent | 40% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 | 13 | | em
f di | 50% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 13 | 14 | 16 | | Displacem
t risk of di | 60% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 9 | 11 | 13 | 15 | 17 | 19 | | ispla
risk | 70% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 18 | 20 | 22 | | at 🗖 | 80% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 15 | 18 | 20 | 23 | 25 | | %) | 90% | 0 | 1 | 1 | 3 | 6 | 8 | 11 | 14 | 17 | 20 | 23 | 25 | 28 | | | 100% | 0 | 1 | 2 | 3 | 6 | 9 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | Table C. 31: LCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase). | Puffin | | | | | | (% of d | | lortality
I birds a | level
t risk of | mortali | y) | | | | |----------------------------------|---|-----------------------------|---------------------------------------|----------------------------------|---|-------------------------------------|--------------------|-------------------------------------|---|---------------------|---------------------|--|---|--| | | reeding | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level
aceme | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
at risk of displ | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lac
k o | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | isp
ris | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TO TO | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Puffin | | U | U | U | U | | М | ortality | level | | | U | V | V | | | | | | | 7 | (% of di | M
splaced | ortality
I birds a | level
It risk of | mortali | ty) | | | | | | reeding | 1% | 2% | 5% | 10% | (% of di | M
splaced | ortality
birds a | level
at risk of
50% | mortali | ty)
70% | 80% | 90% | 100% | | | reeding | 1% | 2% | 5% | 10% | (% of di
20% | Misplaced 30% | ortality birds a 40% | level
at risk of
50% | 60% | ty) | | 90% | | | Non-b | 10%
20% | 1% 0 0 | 2%
0 | 5% 0 0 | 10% 0 0 | (% of di
20%
0
0 | Misplaced 30% 0 0 | ortality l birds a 40% 0 0 | level
at risk of
50% | 60% 0 0 | ty)
70% | 80% | 90% 0 1 | 100% 0 1 | | Non-b | 10%
20%
30% | 1% 0 0 0 | 2% 0 0 0 | 5% 0 0 0 | 10%
0
0 | (% of di
20% 0 0 0 | 30%
0
0
0 | ortality l
birds a 40% 0 0 0 | level t risk of 50% 0 0 1 | 60%
0
0 | ty)
70% | 80% | 90% 0 1 1 | 100%
0
1 | | Non-b | 10%
20%
30%
40% | 1% 0 0 0 0 | 2% 0 0 0 0 | 5% 0 0 0 0 | 10%
0
0
0 | (% of di
20%
0
0
0 | Misplaced 30% 0 0 | ortality I birds a 40% 0 0 0 1 | level
at risk of
50% | 60%
0
0
1 | ty)
70% | 80%
0
1
1 | 90% 0 1 1 | 100%
0
1
1
2 | | Non-b | 10%
20%
30%
40% | 1%
0
0
0
0 | 2%
0
0
0
0 | 5%
0
0
0
0 | 10%
0
0
0
0 | (% of di
20%
0
0
0
0 | 30%
0
0
0 | ortality l birds a 40% 0 0 0 | level t risk of 50% 0 0 1 | 60% 0 0 1 1 | 70% 0 1 1 1 1 | 80%
0
1
1
1
2 | 90%
0
1
1
1
2 | 100%
0
1
1
2
2 | | Non-b | 10%
20%
30%
40%
50% | 1%
0
0
0
0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 10%
0
0
0
0
0 | (% of di
20%
0
0
0 | 30%
0
0
0 | ortality I birds a 40% 0 0 0 1 | level t risk of 50% 0 0 1 | 60% 0 0 1 1 1 | 70% 0 1 1 1 1 2 | 80%
0
1
1
1
2
2 | 90%
0
1
1
1
2
2 | 100%
0
1
1
2
2
2 | | Non-b | 10%
20%
30%
40%
50%
60% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0
0
0
0 | (% of di
20%
0
0
0
0 | 30%
0
0
0 | ortality I birds a 40% 0 0 0 1 | Solution | 60% 0 0 1 1 1 1 2 | 70% 0 1 1 1 1 2 2 | 80%
0
1
1
1
2
2
2 | 90%
0
1
1
1
2
2
3 | 100%
0
1
1
2
2
2
2
3 | | | 10%
20%
30%
40%
50%
60%
70% | 1%
0
0
0
0 | 2%
0
0
0
0
0
0
0 | 5% 0 0 0 0 0 0 0 0 0 0 | 10%
0
0
0
0
0
0
0
0 | (% of di
20% 0 0 0 0 0 0 0 | 30%
0
0
0 | ortality I birds a 40% 0 0 0 1 | Solution | 60% 0 0 1 1 1 1 2 2 | 70% 0 1 1 1 1 2 2 2 | 80%
0
1
1
1
2
2
2
2
3 | 90%
0
1
1
1
2
2
3
3 | 100%
0
1
1
2
2
2 | | Non-b | 10%
20%
30%
40%
50%
60% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0
0
0
0 | (% of di
20% 0 0 0 0 0 0 0 | 30%
0
0
0 | ortality l birds a 40% 0 0 1 1 1 1 | Solution | 60% 0 0 1 1 1 1 2 | 70% 0 1 1 1 1 2 2 | 80%
0
1
1
1
2
2
2 | 90%
0
1
1
1
2
2
3 | 100%
0
1
1
2
2
2
2
3 | Table C. 32: UCI predicted Atlantic puffin mortality for the Mona Array Area plus 2 km buffer during the non-breeding season (operations and maintenance phase). | Puffin | | | | | | (% of d | | lortality
I birds a | | mortali | ty) | | | | |---------------------------------|--|-----------------------------|---------------------------------------|----------------------------------|--|---|------------------------------|---------------------------------------|--|-----------------------|-----------------------|---|---|--| | Non-b | reeding | 40/ | 00/ | 5 0/ | 4.00/ | 000/ | 0.007 | 400/ | 50 0/ | 000/ | 700/ | 000/ | 000/ | 4000/ | | ÷ | 4007 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ı
nen | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level
acement) | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ner
disp | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | cer
of (| 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of disp | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
at risk of disp | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
 % a | 80%
90% | _ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 90% | 0 | 0 | U | U | U | U | U | _ | U | _ | _ | _ | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | | 0
ortality | | 0 | 0 | 0 | 0 | 0 | | Puffin | 100% | 0 | 0 | 0 | 0 | | М | 10 | level | 10 | | 0 | 0 | 0 | | Puffin | 100% | 0
1% | 2% | 5% | 10% | | М | ortality | level | 10 | | 80% | 90% | | | Puffin | 100% | | | | 1 | (% of di | M
splaced | ortality
I birds a | level
t risk of | mortali | ty) | | | | | Puffin
Non-b | 100% | 1% | 2% | 5% | 10% | (% of di | M
splaced | ortality
I birds a | level
t risk of | mortali | ty)
70% | 80% | 90% | 100% | | Puffin
Non-b | 100% preeding | 1% | 2% 0 | 5% | 10% | (% of di
20% | Misplaced | ortality I birds a 40% | level
t risk of
50% | mortali 60% | 70% | 80% | 90% | 100 % | | Puffin
Non-b | 100%
preeding
10%
20% | 1% 0 0 | 2%
0
0 | 5% | 10%
0 | (% of di
20% | Misplaced 30% 1 2 | ortality l birds a 40% 2 3 | level
t risk of
50%
2
4 | 60% 2 5 | 70% 3 6 | 80% 3 6 | 90% 4 7 | 100%
4
8 | | Puffin
Non-b | 100%
oreeding
10%
20%
30% | 1% 0 0 | 2% 0 0 0 | 5% | 10%
0
1 | (% of di
20% 1 2 2 | 30%
1
2
4 | ortality l birds a 40% 2 3 5 | level t risk of 50% 2 4 6 | 60%
2
5
7 | 70% 3 6 8 | 80% 3 6 10 | 90% 4 7 11 | 100%
4
8
12 | | Puffin
Non-b | 100%
oreeding
10%
20%
30%
40% | 1%
0
0
0 | 2% 0 0 0 0 | 5% | 10%
0
1
1
2 | (% of di
20%
1
2
2
3 | 30% 1 2 4 5 | ortality birds a 40% 2 3 5 6 | column c | 60% 2 5 7 10 | 70% 3 6 8 11 | 80%
3
6
10
13 | 90%
4
7
11 | 100%
4
8
12
16 | | Puffin
Non-b | 100% 10% 10% 20% 30% 40% 50% | 1%
0
0
0
0 | 2%
0
0
0
0
0 | 5% | 10%
0
1
1
2
2 | (% of di
20%
1
2
2
2
3
4 | 30%
1
2
4
5
6 | ortality birds a 40% 2 3 5 6 8 | 50%
2
4
6
8
10 | 60% 2 5 7 10 12 | 70% 3 6 8 11 14 | 80%
3
6
10
13
16 | 90%
4
7
11
14
18 | 100%
4
8
12
16
20 | | Puffin
Non-b | 100% reeding 10% 20% 30% 40% 50% 60% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0 | 5% | 10%
0
1
1
2
2 | (% of di
20% 1 2 2 3 4 5 | 30% 1 2 4 5 6 7 | ortality birds a 40% 2 3 5 6 8 10 | 50% 2 4 6 8 10 12 | 60% 2 5 7 10 12 14 | 70% 3 6 8 11 14 17 | 80%
3
6
10
13
16
19 | 90%
4
7
11
14
18
22 | 100%
4
8
12
16
20
24 | | Puffin | 100% 10% 10% 20% 30% 40% 50% 60% 70% | 1%
0
0
0
0
0 | 2%
0
0
0
0
0
0
0 | 5%
0
0
1
1
1
1 | 10%
0
1
1
2
2
2
2 | (% of di
20% 1 2 2 3 4 5 6 | 30% 1 2 4 5 6 7 | ortality birds a 40% 2 3 5 6 8 10 11 | 50% 2 4 6 8 10 12 14 | 60% 2 5 7 10 12 14 17 | 70% 3 6 8 11 14 17 20 | 80%
3
6
10
13
16
19
22 | 90%
4
7
11
14
18
22
25 | 100%
4
8
12
16
20
24
28 | # **C.4** Northern gannet Table C. 33: LCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Ganne | t | | | | (% of | displace | | lity level
at risk o | f mortal | lity) | | | | | |---------------|----------|----|----|----|-------|----------|-----|-------------------------|----------|-------|-----|-----|-----|------| | Spring | migratio | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80%
| 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | ent | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | ace
k of | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | at Di | 60% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | %) | 80% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | | | 100% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | Table C. 34: UCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Ganne | et
g migrati | i | | | | (% of di | | ortality
I birds a | level
It risk of | mortali | ty) | | | | |--------------|-----------------|----|----|----|-----|----------|-----|-----------------------|---------------------|---------|-----|-----|-----|------| | ор | gingian | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | | <u> </u> | 15% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | level | 20% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 25% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 12 | 13 | | a L | 30% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 16 | | ace | 35% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | Displacement | 40% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 | 21 | | ۵ | 60% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 16 | 19 | 22 | 25 | 28 | 31 | | | 80% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | 42 | | | 100% | 1 | 1 | 3 | 5 | 10 | 16 | 21 | 26 | 31 | 36 | 42 | 47 | 52 | Table C. 35: LCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Ganne
Breedi | | | | | (% of | displace | | lity level
at risk c | l
of mortal | lity) | | | | | |-----------------|------|----|----|----|-------|----------|-----|-------------------------|----------------|-------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | level | 15% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 25 | | | 20% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 26 | 30 | 33 | | ent | 25% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | | | 30% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | lace
k of | 35% | 1 | 1 | 3 | 6 | 12 | 17 | 23 | 29 | 35 | 40 | 46 | 52 | 58 | | ispla
risk | 40% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | at D | 60% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 59 | 69 | 79 | 89 | 99 | | %) | 80% | 1 | 3 | 7 | 13 | 26 | 40 | 53 | 66 | 79 | 93 | 106 | 119 | 132 | | | 100% | 2 | 3 | 8 | 17 | 33 | 50 | 66 | 83 | 99 | 116 | 132 | 149 | 165 | Table C. 36: UCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | anne | et | | | | | | Morta | lity level | | | | | | | |---------------------------------|---|----------------------------------|-----------------------------|----------------------------------|-------------------------------------|----------------------------------|---|--|------------------------------|-----------------------------|-----------------------------------|--|---|---| | | | | | | (% of | displace | d birds | at risk c | of mortal | ity) | | | | | | Breed | in <u>g</u> | | | | | | | | | | | | | | | ∵ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 25 | 28 | 31 | | level
acement) | 15% | 0 | 1 | 2 | 5 | 9 | 14 | 18 | 23 | 28 | 32 | 37 | 41 | 46 | | | 20% | 1 | 1 | 3 | 6 | 12 | 18 | 25 | 31 | 37 | 43 | 49 | 55 | 61 | | Displacement
at risk of disp | 25% | 1 | 2 | 4 | 8 | 15 | 23 | 31 | 38 | 46 | 54 | 61 | 69 | 77 | | em
e | 30% | 1 | 2 | 5 | 9 | 18 | 28 | 37 | 46 | 55 | 64 | 74 | 83 | 92 | | k o | 35% | 1 | 2 | 5 | 11 | 21 | 32 | 43 | 54 | 64 | 75 | 86 | 97 | 107 | | ris | 40% | 1 | 2 | 6 | 12 | 25 | 37 | 49 | 61 | 74 | 86 | 98 | 110 | 123 | | | 60% | 2 | 4 | 9 | 18 | 37 | 55 | 74 | 92 | 110 | 129 | 147 | 165 | 184 | | %) | 80% | 2 | 5 | 12 | 25 | 49 | 74 | 98 | 123 | 147 | 172 | 196 | 221 | 245 | | | | | | | - 4 | 0.4 | | 1400 | 150 | 101 | 1044 | 0.45 | 276 | 200 | | | 100% | 3 | 6 | 15 | 31 | 61 | 92 | 123 | 153 | 184 | 214 | 245 | 276 | 306 | | Sann | | 3 | 6 | 15 | <u> 31</u> | | M | ortality | level | | | 245 | 276 | 306 | | | et | | | | | (% of di | M
splaced | ortality
I birds a | level
t risk of | mortali | ty) | | | | | Sann | et
ling | 1% | 2% | 5% | 10% | (% of di | M
splaced | ortality
I birds a | level
It risk of | mortali | ty)
70% | 80% | 90% | 100% | | Sann | et
ling
10% | 1% | 2% | 5% | 10% | (% of di
20% | splaced 30% | ortality birds a 40% | level
t risk of
50% | 60% | 70% | 80% 28 | 90% 32 | 100 % | | Sanno
Breed | et
ling
10%
15% | 1% 0 1 | 2 % 1 1 | 5% 2 3 | 10% 4 5 | 20% 7 11 | 8placed 30% 11 16 | ortality birds a 40% 14 21 | t risk of
50%
18
26 | 60% 21 32 | 70% 25 37 | 80% 28 42 | 90% 32 47 | 100%
35
53 | | Sanno | et
ling
10%
15%
20% | 1% 0 1 | 2%
1
1 | 5%
2
3
4 | 10%
4
5
7 | (% of di
20%
7
11
14 | 30%
11
16
21 | ortality l birds a 40% 14 21 28 | 50%
18
26
35 | 60%
21
32
42 | 70% 25 37 49 | 80% 28 42 56 | 90% 32 47 63 | 100%
35
53
70 | | Ganno
Breed | 10%
15%
20%
25% | 1% 0 1 1 | 2% 1 1 1 2 | 5% 2 3 4 4 | 10%
4
5
7
9 | 20% 7 11 14 18 | 30%
 11
 16
 21
 26 | ortality birds a 40% 14 21 28 35 | 50% 18 26 35 44 | 60%
21
32
42
53 | 70%
25
37
49
61 | 80%
28
42
56
70 | 90%
32
47
63
79 | 100%
35
53
70
88 | | Sanno
Breed | 10%
15%
20%
25%
30% | 1%
0
1
1
1 | 2%
1
1
1
2
2 | 5%
2
3
4
4
5 | 10%
4
5
7
9 | 20% 7 11 14 18 21 | 30%
11
16
21
26
32 | ortality birds a 40% 14 21 28 35 42 | 50% 18 26 35 44 53 | 60% 21 32 42 53 63 | 70%
25
37
49
61
74 | 80%
28
42
56
70
84 | 90%
32
47
63
79
95 | 100%
35
53
70
88
105 | | Sanno
Breed | 10%
15%
20%
25% | 1% 0 1 1 | 2% 1 1 1 2 | 5%
2
3
4
4
5
6 | 10%
4
5
7
9 | 20% 7 11 14 18 21 25 | 30%
 11
 16
 21
 26 | ortality birds a 40% 14 21 28 35 | 50% 18 26 35 44 53 61 | 60% 21 32 42 53 63 74 | 70%
25
37
49
61 | 80%
28
42
56
70 | 90%
32
47
63
79 | 100%
35
53
70
88 | | Sanno
Breed | 10%
15%
20%
25%
30% | 1%
0
1
1
1 | 2%
1
1
1
2
2 | 5%
2
3
4
4
5 | 10%
4
5
7
9 | 20% 7 11 14 18 21 | 30%
11
16
21
26
32 | ortality birds a 40% 14 21 28 35 42 | 50% 18 26 35 44 53 | 60% 21 32 42 53 63 | 70%
25
37
49
61
74 | 80%
28
42
56
70
84 | 90%
32
47
63
79
95 | 100%
35
53
70
88
105 | | Sanno
Breed | 10%
15%
20%
25%
30%
35% | 1%
0
1
1
1
1 | 2%
1
1
1
2
2 | 5%
2
3
4
4
5
6 | 10%
4
5
7
9
11 | 20% 7 11 14 18 21 25 | 30%
11
16
21
26
32
37 | ortality birds a 40% 14 21 28 35 42 49 | 50% 18 26 35 44 53 61 | 60% 21 32 42 53 63 74 | 70% 25 37 49 61 74 86 | 80%
28
42
56
70
84
98 | 90%
32
47
63
79
95
111 | 100%
35
53
70
88
105
123 | | Sann | 10%
15%
20%
25%
30%
35%
40% | 1%
0
1
1
1
1
1 | 2% 1 1 1 2 2 2 3 | 5% 2 3 4 4 5 6 7 | 10%
4
5
7
9
11
12 | 20% 7 11 14 18 21 25 28 | 30% 11 16 21 26 32 37 42 | ortality birds a 40% 14 21 28 35 42 49 56 | 50% 18 26 35 44 53 61 70 | 60% 21 32 42 53 63 74 84 | 70% 25 37 49 61 74 86 98 | 80%
28
42
56
70
84
98
112 | 90%
32
47
63
79
95
111
126 | 100%
35
53
70
88
105
123
140 | Table C. 37: LCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Ganne | t | | | | (% of | displace | | lity leve
at risk o | l
of mortal | lity) | | | | | |----------------------------|----------|-----|----|----|-------|----------|-----|------------------------|----------------|-------|-----|-----|-----|------| | Autum | n migrat | ion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | level | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | | ent
spl | 25% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | | e
di | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | ace
c of | 35% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | Displacem
It risk of di | 40% | 0 | 0 |
1 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 | | at D | 60% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 19 | | %) | 80% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 16 | 18 | 21 | 23 | 26 | | | 100% | 0 | 1 | 2 | 3 | 6 | 10 | 13 | 16 | 19 | 23 | 26 | 29 | 32 | Table C. 38: UCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Sanne | et | | | | /0/ of | | | lity level | | ia. A | | | | | |---------------------------------|--|--|----------------------------------|-----------------------------|---------------------------------|--------------------------------|-------------------------|---|--|-------------------------|--|--|---|--| | lutum | nn migrat | tion | | | (% OT | aispiace | a piras | at risk c | of mortal | ity) | | | | | | | migra | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 17 | 20 | 22 | | el
Eme | 15% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 16 | 20 | 23 | 26 | 29 | 33 | | acem | 20% | 0 | 1 | 2 | 4 | 9 | 13 | 17 | 22 | 26 | 30 | 35 | 39 | 43 | | sp | 25% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 43 | 49 | 54 | | | 30% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 52 | 59 | 65 | | o g | 35% | 1 | 2 | 4 | 8 | 15 | 23 | 30 | 38 | 46 | 53 | 61 | 68 | 76 | | Displacement
at risk of disp | 40% | 1 | 2 | 4 | 9 | 17 | 26 | 35 | 43 | 52 | 61 | 69 | 78 | 87 | | | 60% | 1 | 3 | 7 | 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 | 130 | | | 80% | 2 | 3 | 9 | 17 | 35 | 52 | 69 | 87 | 104 | 121 | 139 | 156 | 173 | | %) | 00% | | | | | | | | | | | | | | | Sanne | 100% | 2 | 4 | 11 | 22 | 43 | 65
M | 87
ortality | 108
level | 130 | 152 | 173 | 195 | 217 | | Sanne | 100% | 2 | | 11 | 22 | | М | ortality | | | | 173 | 195 | 217 | | Sanne | 100%
et
nn migra | 2
nt
_1% | 2 % | 5% | 10% | (% of di | M
splaced | ortality
I birds a
40% | level
t risk of
50% | mortali | ty)
70% | 80% | 90% | 100% | | Sanne | 100%
et
nn migra
10% | 2
1%
0 | 2% 0 | | 10% | (% of di
20% | M
splaced
30% | ortality I birds a 40% | level
t risk of
50% | mortali 60% | 70% | 80% 9 | 90% | 100 % | | Ganne | 100%
et
nn migra | 2
nt
_1% | 2 % | 5% | 10% | (% of di | M
splaced | ortality
I birds a
40% | level
t risk of
50%
6
8 | 60% 7 10 | ty)
70% | 80%
9
13 | 90% 10 15 | 100%
 11
 17 | | Sanne | 100%
et
nn migra
10% | 2
1%
0 | 2% 0 | 5% | 10%
1
2
2 | (% of di
20% | 30%
3 5 7 | ortality I birds a 40% | Sevel | 60% 7 10 13 | 70% | 80%
9
13
18 | 90% | 100%
11
17
22 | | Sanne | 100%
et
nn migra
10%
15% | 2 1% 0 0 | 2% 0 0 | 5%
1
1
1
1 | 10%
1
2
2
3 | 20%
2 3
4 6 | 30%
3 5 7 8 | ortality I birds a 40% 4 7 9 11 | 50%
6
8
11
14 | 60% 7 10 13 17 | 70%
8
12
15
19 | 80%
9
13
18
22 | 90%
 10
 15
 20
 25 | 100%
11
17
22
28 | | Sanne | 100%
et
nn migra
10%
15%
20% | 2 1% 0 0 0 0 | 2%
0
0
0 | 5%
1
1
1
1
1 | 10%
1
2
2 | (% of di
20%
2
3
4 | 30%
3 5 7 | ortality l birds a 40% 4 7 9 | 50%
6
8
11
14
17 | 60% 7 10 13 17 20 | 70%
8
12
15
19
23 | 80%
9
13
18
22
26 | 90%
10
15
20
25
30 | 100%
111
17
22
28
33 | | Sanne | 100%
et
10 migra
10%
15%
20%
25% | 2 1% 0 0 0 0 0 0 | 2%
0
0
0 | 5% 1 1 1 1 2 2 | 10%
1
2
2
3 | 20%
2 3
4 6 | 30%
3 5 7 8 | ortality I birds a 40% 4 7 9 11 | 50%
6
8
11
14 | 60% 7 10 13 17 | 70%
8
12
15
19 | 80%
9
13
18
22 | 90%
 10
 15
 20
 25 | 100%
11
17
22
28 | | Sanne | 100%
et
10%
15%
20%
25%
30% | 2 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0 | 5%
1
1
1
1
1 | 10%
1
2
2
2
3 | 20%
2
3
4
6
7 | 30%
3 5 7 8 10 | ortality birds a 40% 4 7 9 11 13 | 50%
6
8
11
14
17 | 60% 7 10 13 17 20 | 70%
8
12
15
19
23 | 80%
9
13
18
22
26 | 90%
10
15
20
25
30 | 100%
111
17
22
28
33 | | Sanne | 100%
et
10%
15%
20%
25%
30%
35% | 2 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
1
1 | 5% 1 1 1 1 2 2 | 10%
1 2
2 3
3 3
4 | 20% 2 3 4 6 7 8 | 30%
3 5 7 8 10 12 | ortality I birds a 40% 4 7 9 11 13 15 | 50% 6 8 11 14 17 19 | 60% 7 10 13 17 20 23 | 70%
8
12
15
19
23
27 | 80%
9
13
18
22
26
31 | 90%
10
15
20
25
30
35 | 100%
111
17
22
28
33
39 | | Sanne | 100% et 10% 15% 20% 25% 30% 35% 40% | 2 1% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
1
1
1 | 5% 1 1 1 1 2 2 2 | 10%
1 2
2 3
3 3
4 4 | 20%
2 3
4 6
7 8
9 | 30%
3 5 7 8 10 12 13 | ortality birds a 40% 4 7 9 11 13 15 18 | Second S | 60% 7 10 13 17 20 23 26 | 70%
8
12
15
19
23
27
31 | 80%
9
13
18
22
26
31
35 | 90%
10
15
20
25
30
35
40 | 100%
11
17
22
28
33
39
44 | Table C. 39: LCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | Ganne | t | | | | | (% of di | | ortality | level
t risk of | mortalit | ·v) | | | | |----------------------------------|----------|----------|----|----|-----|-----------|---------|----------|--------------------|----------|-----|-----|-----|------| | Spring | migratio | o | | | | (70 0. 0. | opiaooa | | | ortani | .37 | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | ent
spl | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | Displacement
it risk of displ | 70% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | at 🖂 | 80% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | | %) | 90% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | | 100% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | Table C. 40: UCI predicted northern gannet mortality for the Mona Array Area 2 km buffer during Spring migration (operations and maintenance phase). | Ganne | t | | | | | (% of d | | lortality
I birds a | level
t risk of | mortali | ty) | | | | |---------------------------------|---------|---------|------|----|-----|---------|-----|------------------------|--------------------|----------|-----|-----|-----|------| | Spring | migrati | o
1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | int) | 10% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 | | level
acement) | 20% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 11 | 13 | 15 | 16 | | acem | 30% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 20 | 22 | 24 | | disp | 40% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 16 | 20 | 23 | 26 | 29 | 33 | | Displacement
it risk of disp | 50% | 0 | 1 | 2 |
4 | 8 | 12 | 16 | 20 | 24 | 29 | 33 | 37 | 41 | | v of | 60% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 24 | 29 | 34 | 39 | 44 | 49 | | risk | 70% | 1 | 1 | 3 | 6 | 11 | 17 | 23 | 29 | 34 | 40 | 46 | 51 | 57 | | at Z | 80% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 52 | 59 | 65 | | %) | 90% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 37 | 44 | 51 | 59 | 66 | 73 | | | 100% | 1 | 2 | 4 | 8 | 16 | 24 | 33 | 41 | 49 | 57 | 65 | 73 | 82 | | | 10070 | Gann | not. | | 0 | 110 | 27 | 100 | | ortality | • | 100 | 170 | O. | | Gann | et | | | • | • | /0/ - f -1' | | ortality l | | | - ^ | • | | |--------------|-----------|-----|----|----|-----|-------------|---------|------------|-----------|---------|-----|-----|-----| | Sprin | g migrati | ion | | | | (% or al: | spiaced | birds a | t risk of | mortani | у) | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | | | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | a | 20% | 0 | 0 | 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | level | 30% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | | in | 40% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 | | Displacement | 50% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 16 | 18 | 21 | 23 | | ace | 60% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 16 | 19 | 22 | 25 | 28 | | lds | 70% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | | ā | 80% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | | | 90% | 0 | 1 | 2 | 5 | 9 | 14 | 19 | 23 | 28 | 33 | 37 | 42 | | ı | 100% | 1 | 1 | 3 | 5 | 10 | 16 | 21 | 26 | 31 | 36 | 42 | 47 | Table C. 41: LCI predicted northern gannet mortality for the Mona Array Area 2 km buffer during the breeding season (operations and maintenance phase). | Ganne | et | | | | | /9/ of d | | ortality | level
t risk of | mortali | h.) | | | | |---|-------------|----|----|----|-----|----------|----------|------------|--------------------|---------|-----|-----|-----|------| | Breed | in <u>g</u> | | | | | (% OI U | ispiaceo | i bii us a | t risk oi | mortani | .y) | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 1 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 | 17 | | level | 20% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 26 | 30 | 33 | | • | 30% | 0 | 1 | 2 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | ent | 40% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 40 | 46 | 53 | 59 | 66 | | em
f di | 50% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 41 | 50 | 58 | 66 | 74 | 83 | | Displacement
it risk of displ | 60% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 59 | 69 | 79 | 89 | 99 | | spla | 70% | 1 | 2 | 6 | 12 | 23 | 35 | 46 | 58 | 69 | 81 | 93 | 104 | 116 | | a t | 80% | 1 | 3 | 7 | 13 | 26 | 40 | 53 | 66 | 79 | 93 | 106 | 119 | 132 | | %) | 90% | 1 | 3 | 7 | 15 | 30 | 45 | 59 | 74 | 89 | 104 | 119 | 134 | 149 | | | 100% | 2 | 3 | 8 | 17 | 33 | 50 | 66 | 83 | 99 | 116 | 132 | 149 | 165 | Table C. 42: UCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Gann | et | | | | | (% of d | M
isplaced | ortality
I birds a | | mortalit | (y) | | | | |---------------------------------|---|---|---------------------------------------|---|---|----------------------------------|---|--|--------------------------------|------------------------------------|------------------------------------|--|--|--| | Breed | ding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 25 | 28 | 31 | | level
aceme | 20% | 1 | 1 | 3 | 6 | 12 | 18 | 25 | 31 | 37 | 43 | 49 | 55 | 61 | | | 30% | 1 | 2 | 5 | 9 | 18 | 28 | 37 | 46 | 55 | 64 | 74 | 83 | 92 | | ent
sp | 40% | 1 | 2 | 6 | 12 | 25 | 37 | 49 | 61 | 74 | 86 | 98 | 110 | 123 | | Displacement
at risk of disp | 50% | 2 | 3 | 8 | 15 | 31 | 46 | 61 | 77 | 92 | 107 | 123 | 138 | 153 | | ac
 k | 60% | 2 | 4 | 9 | 18 | 37 | 55 | 74 | 92 | 110 | 129 | 147 | 165 | 184 | | isp
ris | 70% | 2 | 4 | 11 | 21 | 43 | 64 | 86 | 107 | 129 | 150 | 172 | 193 | 214 | | | 80% | 2 | 5 | 12 | 25 | 49 | 74 | 98 | 123 | 147 | 172 | 196 | 221 | 245 | | %) | 90% | 3 | 6 | 14 | 28 | 55 | 83 | 110 | 138 | 165 | 193 | 221 | 248 | 276 | | | | | | | | | | | | | | | | | | Gann | 100%
et | 3 | 6 | 15 | 31 | 61 | | 123
ortality | | 184 | 214 | 245 | 276 | 306 | | | | ion | | | | (% of di | M
splaced | ortality
I birds a | level
t risk of | mortali | ty) | | | | | | et
og migrat | ion
1% | 2% | 5% | 10% | (% of di | M
splaced | ortality
I birds a | level
t risk of
50% | mortali | ty)
70% | 80% | 90% | 100% | | | g migrat | ion
1% | 2% | 5% 2 | 10% | (% of di
20% | Misplaced 30% | ortality birds a 40% | t risk of 50% | 60% | 70% | 80% 28 | 90% 32 | 100 % | | Sprin | et g migrat 10% 20% | 1%
0
1 | 2% 1 | 5% 2 4 | 10% 4 7 | 20% 7 14 | 30%
11
21 | ortality l birds a 40% 14 28 | t risk of 50% 18 35 | 60% 21 42 | 70% 25 49 | 80% 28 56 | 90% 32 63 | 100%
35
70 | | Sprin | net migrat 10% 20% 30% | 0
1
1 | 2% 1 1 2 | 5% 2 4 5 | 10%
4
7
11 | (% of di
20%
7
14
21 | 30%
11
21
32 | ortality birds a 40% 14 28 42 | 18 35 53 | 60%
21
42
63 | 70%
25
49
74 | 80%
28
56
84 | 90% 32 63 95 | 100%
35
70
105 | | Sprin | ng migrat
10%
20%
30%
40% | 1%
0
1
1 | 2% 1 1 2 3 | 5% 2 4 5 7 | 10%
4
7
11 | 20% 7 14 21 28 | 30%
11
21
32
42 | ortality birds a 40% 14 28 42 56 | 50%
18
35
53
70 | 60%
21
42
63
84 | 70%
25
49
74
98 | 80%
28
56
84
112 | 90%
32
63
95
126 | 100%
35
70
105
140 | | Sprin | 10%
20%
30%
40%
50% | 1%
0
1
1
1
1
2 | 2%
1
1
2
3
4 | 5%
2
4
5
7 | 10%
4
7
11
14
18 | 20% 7 14 21 28 35 | 30%
11
21
32
42
53 | ortality birds a 40% 14 28 42 56 70 | 50% 18 35 53 70 88 | 60%
21
42
63
84
105 | 70%
25
49
74
98
123 | 80%
28
56
84
112
140 | 90%
32
63
95
126
158 | 100%
35
70
105
140
176 | | Sprin | 10%
20%
30%
40%
50% | ion 1% 0 1 1 1 2 2 | 2%
1
1
2
3
4 | 5%
2
4
5
7
9 | 10%
4
7
11
14
18
21 | 20% 7 14 21 28 35 42 | 30% 11 21 32 42 53 63 | ortality birds a 40% 14 28 42 56 70 84 | t risk of | 60% 21 42 63 84 105 126 | 70% 25 49 74 98 123 147 | 80%
28
56
84
112
140
168 | 90%
32
63
95
126
158
190 | 100%
35
70
105
140
176
211 | | Sprin | 10%
20%
30%
40%
50%
60%
70% | 1%
0
1
1
1
2
2 | 2%
1
1
2
3
4
4
5 | 5%
2
4
5
7
9
11 | 10%
4
7
11
14
18
21
25 | 20% 7 14 21 28 35 42 49 | 30%
11
21
32
42
53
63
74 | ortality birds a 40% 14 28 42 56 70 84 98 | 50% 18 35 53 70 88 105 123 | 60% 21 42 63 84 105 126 147 | 70% 25 49 74 98 123 147 172 | 80%
28
56
84
112
140
168
197 | 90%
32
63
95
126
158
190
221 | 100%
35
70
105
140
176
211
246 | | | 10% 20% 30% 40% 50% 60% 70% 80% | ion
1%
0
1
1
1
2
2
2
3 | 2% 1 1 2 3 4 4 5 | 5%
2
4
5
7
9
11
12 | 10% 4 7 11 14 18 21 25 28 | 20% 7 14 21 28 35 42 49 56 | 30%
11
21
32
42
53
63
74
84 | ortality birds a 40% 14 28 42 56 70 84 98 112 | 50% 18 35 53 70 88 105 123 140 | 60% 21 42 63 84 105 126 147 168 | 70% 25 49 74 98 123 147 172 197 | 80%
28
56
84
112
140
168
197
225 | 90%
32
63
95
126
158
190
221
253 | 100%
35
70
105
140
176
211
246
281 | | Sprin | 10%
20%
30%
40%
50%
60%
70% | 1%
0
1
1
1
2
2 | 2%
1
1
2
3
4
4
5 | 5%
2
4
5
7
9
11 | 10%
4
7
11
14
18
21
25 | 20% 7 14 21 28 35 42 49 | 30%
11
21
32
42
53
63
74 | ortality birds a 40% 14 28 42 56 70 84 98 | 50% 18 35 53 70 88 105 123 | 60% 21 42 63 84 105 126 147 | 70% 25 49 74 98 123 147 172 | 80%
28
56
84
112
140
168
197 | 90%
32
63
95
126
158
190
221 | 100%
35
70
105
140
176
211
246 | Table C. 43: LCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Ganne | t | | | | | (% of di | | ortality
birds a | level
t risk of | mortali | ty) | | | | |---------------|----------|-----|----|----|-----|----------|-----|---------------------|--------------------|---------|-----|-----|-----|------| | Autum | n migrat | ion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | level | 20% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | | 10 | 30% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | ent | 40% | 0 | 0 | 1 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 | | | 50% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 10 |
11 | 13 | 15 | 16 | | lace
k of | 60% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 19 | | ispla
risk | 70% | 0 | 0 | 1 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 | 23 | | | 80% | 0 | 1 | 1 | 3 | 5 | 8 | 10 | 13 | 16 | 18 | 21 | 23 | 26 | | %) | 90% | 0 | 1 | 1 | 3 | 6 | 9 | 12 | 15 | 18 | 20 | 23 | 26 | 29 | | | 100% | 0 | 1 | 2 | 3 | 6 | 10 | 13 | 16 | 19 | 23 | 26 | 29 | 32 | Table C. 44: UCI predicted northern gannet mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Sanne | et | | | | | (% of d | | lortality
I birds a | level
t risk of | mortali | ty) | | | | |---------------------------------|--|------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|------------------------------------|--|--|--|--|---------------------------------------|--|--| | Autun | nn migrat | tion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 17 | 20 | 22 | | level | 20% | 0 | 1 | 2 | 4 | 9 | 13 | 17 | 22 | 26 | 30 | 35 | 39 | 43 | | | 30% | 1 | 1 | 3 | 7 | 13 | 20 | 26 | 33 | 39 | 46 | 52 | 59 | 65 | | Displacement
it risk of disp | 40% | 1 | 2 | 4 | 9 | 17 | 26 | 35 | 43 | 52 | 61 | 69 | 78 | 87 | | Displacement
at risk of disp | 50% | 1 | 2 | 5 | 11 | 22 | 33 | 43 | 54 | 65 | 76 | 87 | 98 | 108 | | lac
ko | 60% | 1 | 3 | 7 | 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 | 130 | | sp
ris | 70% | 2 | 3 | 8 | 15 | 30 | 46 | 61 | 76 | 91 | 106 | 121 | 137 | 152 | | co. | 80% | 2 | 3 | 9 | 17 | 35 | 52 | 69 | 87 | 104 | 121 | 139 | 156 | 173 | | %) | 90% | 2 | 4 | 10 | 20 | 39 | 59 | 78 | 98 | 117 | 137 | 156 | 176 | 195 | | | 100% | 2 | 4 | 11 | 22 | 43 | 65 | 87 | 108 | 130 | 152 | 173 | 195 | 217 | | cann | et | | | | | | M | ortality | level | | | | | | | | et
g migrat | ion | | | | (% of di | | ortality
I birds a | level
It risk of | mortali | ty) | | | | | Ganno
Spring | | ion
1% | 2% | 5% | 10% | 20% | | | | mortali | ty) | 80% | 90% | 100% | | | | | 2% | 5% | 1 | ` | splaced | l birds a | t risk of | | | 80% 9 | 90% | 100 % | | Sprin | g migrat | 1% | | | 10% 1 2 | 20% | splaced | l birds a | t risk of | 60% | 70% | | | | | Sprin | g migrat | 1% | 0 | | 1 | 20% | 30% | 40%
4 | 50% | 60% 7 | 70% | 9 | 10 | 11 | | Sprin | g migrat
10%
20% | 1%
0 | 0 | 1 | 1 2 | 20% 2 4 | 30%
3
7 | 40%
4
9 | 50%
6
11 | 60% 7 13 | 70% 8 15 | 9
18 | 10
20 | 11
22 | | Sprin | g migrat
10%
20%
30% | 1%
0
0
0 | 0
0
1 | 1 1 2 | 1 2 3 | 20% 2 4 7 | 30%
3
7
10 | 40%
4 9
13 | 50%
6
11
17 | 60%
7
13
20 | 70% 8 15 23 | 9
18
26 | 10
20
30 | 11
22
33 | | Sprin | 9 migrat
10%
20%
30%
40% | 1%
0
0
0
0 | 0
0
1 | 1
1
2
2 | 1
2
3
4 | 20%
2
4
7
9 | 30%
3
7
10
13 | 40%
4 9
13
18 | 50%
6
11
17
22 | 60%
7
13
20
26 | 70%
8
15
23
31 | 9
18
26
35 | 10
20
30
40 | 11
22
33
44 | | Sprin | 10%
20%
30%
40%
50% | 1%
0
0
0
0 | 0
0
1 | 1
1
2
2
3 | 1
2
3
4
6 | 20%
2
4
7
9
11 | 30% 3 7 10 13 17 | 40%
4 9
13
18
22 | 50%
6
11
17
22
28 | 60%
7
13
20
26
33 | 70%
8
15
23
31
39 | 9
18
26
35
44 | 10
20
30
40
50 | 11
22
33
44
55 | | | 10%
20%
30%
40%
50% | 1%
0
0
0
0 | 0
0
1
1
1
1 | 1
1
2
2
3
3 | 1
2
3
4
6
7 | 20%
2
4
7
9
11 | 30%
3 7
10
13
17
20 | 40%
4 9
13
18
22
26 | 50%
6
11
17
22
28
33 | 60%
7
13
20
26
33
40 | 70%
8
15
23
31
39
46 | 9
18
26
35
44
53 | 10
20
30
40
50
59 | 22
33
44
55
66 | | Sprin | 10%
20%
30%
40%
50%
60% | 1%
0
0
0
0 | 0
0
1
1
1
1
2 | 1
1
2
2
3
3
4 | 1
2
3
4
6
7
8 | 20% 2 4 7 9 11 13 15 | 30% 3 7 10 13 17 20 23 | 40%
4 9
13
18
22
26
31 | 50% 6 11 17 22 28 33 39 | 60%
7
13
20
26
33
40
46 | 70%
8
15
23
31
39
46
54 | 9
18
26
35
44
53
62 | 10
20
30
40
50
59
69 | 11
22
33
44
55
66
77 | # C.5 Black-legged kittiwake Table C. 45: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | Kittiwa | ke | | | | | | | Morta | lity leve | I | | | | | |--|----------|---------|-----|----|-----|-----------|---------|-----------|-----------|---------|--------|-----|-----|------| | TAILLIVE | inc | | | | | (% of di | splaced | | t risk of | | v) | | | | | Spring | migratio | on | | | | (70 01 01 | оріаоо | bii ao a | | ortani | .37 | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 1 | 1 | 3 | 6 | 12 | 19 | 25 | 31 | 37 | 43 | 49 | 56 | 62 | | level | 15% | 1 | 2 | 5 | 9 | 19 | 28 | 37 | 46 | 56 | 65 | 74 | 83 | 93 | | | 20% | 1 | 2 | 6 | 12 | 25 | 37 | 49 | 62 | 74 | 86 | 99 | 111 | 124 | | Displacement
at risk of displ | 25% | 2 | 3 | 8 | 15 | 31 | 46 | 62 | 77 | 93 | 108 | 124 | 139 | 154 | | em
di di | 30% | 2 | 4 | 9 | 19 | 37 | 56 | 74 | 93 | 111 | 130 | 148 | 167 | 185 | | <u>k</u> 0 | 35% | 2 | 4 | 11 | 22 | 43 | 65 | 86 | 108 | 130 | 151 | 173 | 195 | 216 | | Displacement
It risk of disp | 40% | 2 | 5 | 12 | 25 | 49 | 74 | 99 | 124 | 148 | 173 | 198 | 222 | 247 | | | 60% | 4 | 7 | 19 | 37 | 74 | 111 | 148 | 185 | 222 | 259 | 297 | 334 | 371 | | %) | 80% | 5 | 10 | 25 | 49 | 99 | 148 | 198 | 247 | 297 | 346 | 395 | 445 | 494 | | | 100% | 6 | 12 | 31 | 62 | 124 | 185 | 247 | 309 | 371 | 432 | 494 | 556 | 618 | | Black- | -legged | kittiwa | ake | | | | | ility lev | | | | | | | | | | | | | (% | % of dis | placed | birds a | at risk o | f morta | ılity) | | | | | Spring | g migrat | ion | | | | | | | | | | | | | | ○ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 1 | 2 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | | le / | 15% | 1 | 1 | 3 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | | <u>ac</u> | 20% | 1 | 2 | 4 | 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | | ent
spl | 25% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | Displacement level
at risk of displacement) | 30% | 1 | 2 | 6 | 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 107 | 119 | | ac | 35% | 1 | 3 | 7 | 14 | 28 | 42 | 56 | 70 | 84 | 98 | 111 | 125 | 139 | | spl
isk | 40% | 2 | 3 | 8 | 16 | 32 | 48 | 64 | 80 | 96 | 111 | 127 | 143 | 159 | | at D | 60% | 2 | 5 | 12 | 24 | 48 | 72 | 96 | 119 | 143 | 167 | 191 | 215 | 239 | | %) | 80% | 3 | 6 | 16 | 32 | 64 | 96 | 127 | 159 | 191 | 223 | 255 | 287 | 318 | | | 100% | 4 | 8 | 20 | 40 | 80 | 119 | 159 | 199 | 239 | 279 | 318 | 358 | 398 | Table C. 46: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | ttiwa | ake | | | | | | M | ortality | level | | | | | | |-----------------|---|--|---------------------------------------|---|--|--------------------------|---|-----------------------------------|---|---|--------------------------------------|--|---|--| | | | | | | | (% of d | isplaced | birds a | t risk of | mortalit | y) | | | | | oring | g <mark>migrati</mark> e | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 1 | 2 | 6 | 12 | 24 | 37 | 49 | 61 | 73 | 86 | 98 | 110 | 122 | | acement) | 15% | 2 | 4 | 9 | 18 | 37 | 55 | 73 | 92 | 110 | 128 | 147 | 165 | 183 | | | 20% | 2 | 5 | 12 | 24 | 49 | 73 | 98 | 122 | 147 | 171 | 196 | 220 | 245 | | si | 25% | 3 | 6 | 15 | 31 | 61 | 92 | 122 | 153 | 183 | 214 | 245 | 275 | 306 | | of
G | 30% | 4 | 7 | 18 | 37 | 73 | 110 | 147 | 183 | 220 | 257 | 294 | 330 | 367 | | ķ | 35% | 4 | 9 | 21 | 43 | 86 | 128 | 171 | 214 | 257 | 300 | 343 | 385 | 428 | | at risk of disp | 40% | 5 | 10 | 24 | 49 | 98 | 147 | 196 | 245 | 294 | 343 | 391 | 440 | 489 | | | 60% | 7 | 15 | 37 | 73 | 147 | 220 | 294 | 367 | 440 | 514 | 587 | 661 | 734 | | %) | 80% | 10 | 20 | 49 | 98 | 196 | 294 | 391 | 489
612 | 587 | 685 | 783
979 | 881
1101 | 979 | | | | | | | | | | 1/1/2/(1 | 1617 | 1/2/ | | 1070 | 111()1 | 11')')' | | la al- | 100% | 12 | 24 | 61 | 122 | 245 | 367 | 489 | | 734 | 856 | 313 | 11101 | 1223 | | lack | 100%
-legged | | | 61 | | | Morta | lity lev | el | | | 313 | 11101 | 1223 | | lack | | | | <u> 61</u> | | | | lity lev | el | | | 919
| 1101 | 1223 | | | | kittiwa | | <u> 61</u> | | | Morta | lity lev | el | | | 373 | 1101 | 1223 | | prin | -legged | kittiwa | | 5% | | | Morta | lity lev | el | | | 80% | 90% | 1009 | | prin | -legged | kittiwa
tion | ake | | (9 | % of dis | Morta
splaced | lity leven birds a | el
at risk o | f morta | lity) | | | | | prin | -legged
g migra | kittiwa
tion
1% | ake
2% | 5% | 10% | % of dis | Morta
splaced
30% | lity level birds a | el
at risk o
50% | f morta | 70% | 80% | 90% | 1009 | | prin | -legged
g migra
10% | kittiwa
tion
1% | 2% | 5% | 10%
8 | % of dis | Morta
splaced
30%
24 | birds a | el
at risk o
50%
40 | f morta 60% 48 | 70% 56 | 80% 64 | 90% 72 | 100 ° 80 | | prin | -legged
g migra
10%
15% | kittiwa
tion
1%
1 | 2%
2
2 | 5% 4 6 | 10%
8
12 | % of dis | Morta splaced 30% 24 36 | birds a 40% 32 48 | 50%
40 | 60%
48
72 | 70% 56 84 | 80%
64
96 | 90% 72 108 | 100°
80
120 | | prin | -legged
g migra
10%
15%
20% | kittiwa
tion
1%
1
1
2 | 2%
2
2
2
3 | 5% 4 6 8 | 10%
8
12
16 | % of dis | Morta splaced 30% 24 36 48 | 40%
32
48
64 | 50%
40
60
80 | 60%
48
72
96 | 70%
56
84
112 | 80% 64 96 128 | 90%
72
108
143 | 100°
80
120
159 | | prin | 10%
15%
20%
25% | kittiwa
tion
1%
1
1
2
2 | 2%
2
2
2
3
4 | 5% 4 6 8 10 | 10%
8
12
16
20 | 20% 16 24 32 40 | Morta
splaced
30%
24
36
48
60 | 40%
32
48
64
80 | 50%
40
60
80
100 | 60%
48
72
96
120 | 70%
56
84
112
139 | 80% 64 96 128 159 | 90%
72
108
143
179
215 | 100°
80
120
159
199 | | prin | 10%
15%
20%
25%
30% | kittiwa tion 1% 1 2 2 2 | 2%
2
2
2
3
4
5 | 5%
4
6
8
10
12 | 10%
8
12
16
20
24 | 20% 16 24 32 40 48 | Morta
splaced
30%
24
36
48
60
72 | 40%
32
48
64
80
96 | 50%
40
60
80
100
120 | 60%
48
72
96
120
143 | 70%
56
84
112
139
167 | 80%
64
96
128
159
191 | 90%
72
108
143
179 | 100°
80
120
159
199
239 | | prin | 10%
15%
20%
25%
30%
35% | tion 1% 1 2 2 2 3 3 3 | 2%
2
2
2
3
4
5
6 | 5%
4
6
8
10
12
14 | 10%
8
12
16
20
24
28 | 20% 16 24 32 40 48 56 | Morta
splaced
30%
24
36
48
60
72
84 | 40% 32 48 64 80 96 112 | 50%
40
60
80
100
120
139
159 | 60%
48
72
96
120
143
167 | 70% 56 84 112 139 167 195 | 80%
64
96
128
159
191
223
255 | 90%
72
108
143
179
215
251 | 100°
80
120
159
199
239
279 | | ent)
eut) | 10%
15%
20%
25%
30%
35%
40% | kittiwa
tion
1%
1
1
2
2
2
2
3 | 2%
2
2
3
4
5
6 | 5%
4
6
8
10
12
14
16 | 10%
8
12
16
20
24
28
32 | 20% 16 24 32 40 48 56 64 | Morta
splaced
30%
24
36
48
60
72
84
96 | 40% 32 48 64 80 96 112 128 | 50%
40
60
80
100
120
139 | 60%
48
72
96
120
143
167
191 | 70% 56 84 112 139 167 195 223 | 80%
64
96
128
159
191
223 | 90%
72
108
143
179
215
251
287 | 100°
80
120
159
199
239
279
319 | Table C. 47: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Cittiwa | ake | | | | | 104 | ملاد مائم سام | | lity leve | | | | | | |---------------------------------|--|-------------------|------------------------|----------------------------------|---------------------------------------|--------------------------|---|---|---|---|------------------------------------|--|---|--| | Breed | lina | | | | | (% | of displa | iced bir | ds at ris | k of moi | tality) | | | | | | 9 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 | 21 | | level
aceme | 15% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 16 | 19 | 22 | 25 | 28 | 31 | | | 20% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | 42 | | Displacement
at risk of disp | 25% | 1 | 1 | 3 | 5 | 10 | 16 | 21 | 26 | 31 | 36 | 42 | 47 | 52 | | Displacement
it risk of disp | 30% | 1 | 1 | 3 | 6 | 12 | 19 | 25 | 31 | 37 | 44 | 50 | 56 | 62 | | x ac | 35% | 1 | 1 | 4 | 7 | 15 | 22 | 29 | 36 | 44 | 51 | 58 | 66 | 73 | | ris | 40% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 83 | | | 60% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | | %) | 80% | 2 | 3 | 8 | 17 | 33 | 50 | 67 | 83 | 100 | 116 | 133 | 150 | 166 | | | 40001 | | | 4.0 | - 4 | 140 | ~ ~ | | | | | | | | | | 100%
c-legged | 2
kittiw | 4
ake | 10 | 21 | 42
% of dis | | 83
lity lev | | 125 | 146
 lity) | 166 | 187 | 208 | | Black | c-legged | | | 10 | | | | lity lev | el | | | 166 | 187 | 208 | | Black
Breed | c-legged | | | 5% | | | Morta | lity lev | el | | | 80% | 90% | | | Black
Breed | c-legged | kittiw | ake | | (9 | % of dis | Morta
splaced | lity lev | el
it risk o | f morta | lity) | | | | | Black
Breed | k-legged
ding | kittiw | ake
2% | 5% | 10% | % of dis | Morta
splaced
30% | lity lev
birds a | el
at risk o
50% | f morta | 70% | 80% | 90% | 1009 | | Black
Breed | t-legged
ding
10% | 1%
0 | ake
2% | 5% 2 | 10% 5 | % of dis | Morta
splaced
30% | birds a | el
at risk o
50%
25 | 60% | 70% | 80% 39 | 90% 44 | 100 9 | | Black
Breed | ding
10% | 1%
0 | 2%
1 | 5% 2 4 | 10%
5
7 | 20% 10 15 | Morta splaced 30% 15 22 | birds a 40% 20 29 | 50%
25
37 | 60%
29
44 | 70% 34 52 | 80%
39
59 | 90% 44 66 | 100%
49
74 | | Black
Breed | ding
10%
15%
20% | 1%
0
1 | 2%
1
1
2 | 5% 2 4 5 | 10%
5
7
10 | 20% 10 15 20 | Morta
splaced
30%
15
22
29 | 40%
20
29
39 | 50%
25
37
49 | 60%
29
44
59 | 70%
34
52
69 | 80% 39 59 79 | 90% 44 66 88 | 100%
49
74
98 | | Black
Breed | ding
10%
15%
20% | 1%
0
1 | 2%
1
1
2
2 | 5%
2
4
5
6 | 10%
5
7
10
12 | 20% 10 15 20 25 | Morta
splaced
30%
15
22
29
37 | 40%
20
29
39
49 | 50%
25
37
49
61 | 60%
29
44
59
74 | 70%
34
52
69
86 | 80%
39
59
79
98 | 90%
44
66
88
110 | 1009
49
74
98
123 | | Black
Breed | ding
10%
15%
20%
25%
30% | 1%
0
1
1 | 2% 1 1 2 2 3 | 5%
2
4
5
6
7 | 10%
5
7
10
12
15 | 20% 10 15 20 25 29 | Morta
splaced
30%
15
22
29
37
44 | 40%
20
29
39
49
59 | 50%
25
37
49
61
74 | 60%
29
44
59
74
88 | 70%
34
52
69
86
103 | 80%
39
59
79
98
118 | 90%
44
66
88
110
133 | 1009
49
74
98
123
147 | | eut) | 10%
15%
20%
25%
30%
35% | 1% 0 1 1 1 1 2 | 2% 1 1 2 2 3 3 | 5%
2
4
5
6
7 | 10%
5
7
10
12
15
17 | 20% 10 15 20 25 29 34 | Morta
splaced
30%
15
22
29
37
44
52 | 40%
20
29
39
49
59
69 | 50%
25
37
49
61
74
86 | 60%
29
44
59
74
88
103 | 70% 34 52 69 86 103 120 | 80%
39
59
79
98
118
137 | 90%
44
66
88
110
133
155 | 1009
49
74
98
123
147
172 | | Black
Breed | 10%
15%
20%
25%
30%
35%
40%
60% | 1% 0 1 1 1 2 2 | 2% 1 1 2 2 3 3 4 | 5%
2
4
5
6
7
9 | 10% 5 7 10 12 15 17 20 | 20% 10 15 20 25 29 34 39 | Morta
splaced
30%
15
22
29
37
44
52
59 | 40%
20
29
39
49
59
69
79 | 50%
25
37
49
61
74
86
98 | 60%
29
44
59
74
88
103
118 | 70% 34 52 69 86 103 120 137 | 80%
39
59
79
98
118
137
157 | 90%
44
66
88
110
133
155
177 | 100%
49
74
98
123
147
172
196 | Table C. 48: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Cittiwa | ake | | | | | /0/ -f -l | | ortality | | | | | | | |---------------------------------|--|------------------|----------------------------------|--|---|---|---|---|--|--|---------------------------------------|---|---
---| | Breed | lina | | | | | (% or a | isplaced | birds a | t risk of | mortalit | (y) | | | | | | ig | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ievei
acement) | 10% | 1 | 1 | 3 | 6 | 11 | 17 | 22 | 28 | 34 | 39 | 45 | 50 | 56 | | level
aceme | 15% | 1 | 2 | 4 | 8 | 17 | 25 | 34 | 42 | 50 | 59 | 67 | 75 | 84 | | | 20% | 1 | 2 | 6 | 11 | 22 | 34 | 45 | 56 | 67 | 78 | 89 | 101 | 112 | | Displacement
at risk of disp | 25% | 1 | 3 | 7 | 14 | 28 | 42 | 56 | 70 | 84 | 98 | 112 | 126 | 140 | | G G | 30% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 117 | 134 | 151 | 168 | | ik ac | 35% | 2 | 4 | 10 | 20 | 39 | 59 | 78 | 98 | 117 | 137 | 157 | 176 | 196 | | Displacement
it risk of disp | 40% | 2 | 4 | 11 | 22 | 45 | 67 | 89 | 112 | 134 | 157 | 179 | 201 | 224 | | | 60% | 3 | 7 | 17 | 34 | 67 | 101 | 134 | 168 | 201 | 235 | 268 | 302 | 335 | | %) | 80% | 4 | 9 | 22 | 45 | 89 | 134 | 179 | 224 | 268 | 313 | 358 | 402 | 447 | |) | 4000/ | | 144 | | | 1440 | 400 | | | | | | | | | | 100%
c-legged | 6
kittiwa | 11
ake | 28 | 56 | 112
% of dis | | 224
lity lev | | 335 | 391
 lity | 447 | 503 | 559 | | | c-legged | | | 28 | | | | lity lev | el | | | <u> 447</u> | 503 | 559 | | Black
Breed | c-legged
ding | | | 5% | | | Morta | lity lev | el | | | 80% | 90% | | | Black
Breed | c-legged
ding | kittiw | ake | | (9 | % of dis | Morta
splaced | lity lev
birds a | el
at risk c | f morta | lity) | | | | | Black
Breed | c-legged
ding | kittiwa | ake
2% | 5% | 10% | % of dis | Morta
splaced
30% | lity lev
birds a | el
at risk o
50% | f morta | 70% | 80% | 90% | 100 | | Black
Breed | c-legged
ding | 1% | 2%
2 | 5% | 10% | % of dis | Morta
splaced
30%
31 | birds a | el
at risk o
50%
52 | 60% | 70% | 80% 82 | 90%
93 | 100 ° 103 | | Black | c-legged
ding | 1% 1 2 | 2%
2
2 | 5% 5 8 | 10%
10
15 | % of dis | Morta
splaced
30%
31
46 | birds a 40% 41 62 | 50% 52 77 | 60%
62
93 | 70% 72 108 | 80%
82
124 | 90%
93
139 | 100°
103
155 | | Black | c-legged
ding | 1% 1 2 2 | 2%
2
3
4 | 5% 5 8 10 | 10%
10
15
21 | % of dis | Morta splaced 30% 31 46 62 | 40%
41
62
82 | 50%
52
77
103 | 60%
62
93
124 | 70%
72
108
144 | 80%
82
124
165 | 90%
93
139
186 | 100°
103
155
206 | | Black
Breed | c-legged
ding | 1% 1 2 2 3 | 2%
2
3
4
5 | 5%
5
8
10
13 | 10%
10
15
21
26 | 20% 21 31 41 52 | Morta
splaced
30%
31
46
62
77 | 40%
41
62
82
103 | 50%
52
77
103
129 | 60%
62
93
124
155 | 70%
72
108
144
180 | 80%
82
124
165
206 | 90%
93
139
186
232 | 1009
103
155
206
258 | | Black | c-legged
ding | 1% 1 2 2 3 3 | 2%
2
3
4
5
6 | 5%
5
8
10
13
15 | 10%
10
15
21
26
31 | % of dis
20%
21
31
41
52
62 | Morta
splaced
30%
31
46
62
77
93 | 40%
41
62
82
103
124 | 50%
52
77
103
129
155 | 60%
62
93
124
155
186 | 70%
72
108
144
180
217 | 80%
82
124
165
206
247 | 90%
93
139
186
232
278 | 100°
103
155
206
258
309 | | Black
Breed | c-legged
ding | 1% 1 2 2 3 3 4 | 2%
2
3
4
5
6
7 | 5%
5
8
10
13
15 | 10%
10
15
21
26
31
36 | 20% 21 31 41 52 62 72 | Morta
splaced
30%
31
46
62
77
93
108 | 40%
41
62
82
103
124
144 | 50%
52
77
103
129
155
180 | 60%
62
93
124
155
186
217 | 70% 72 108 144 180 217 253 | 80%
82
124
165
206
247
289 | 90%
93
139
186
232
278
325 | 100°
103
155
206
258
309
361 | | Black
Breed | 10%
15%
20%
25%
30%
35%
40%
60% | 1% 1 2 2 3 3 4 4 | 2%
2 3
4 5
6 7
8 | 5%
5
8
10
13
15
18
21 | 10%
10
15
21
26
31
36
41 | 20% 21 31 41 52 62 72 82 | Morta
splaced
30%
31
46
62
77
93
108
124 | 40%
41
62
82
103
124
144
165 | 50%
52
77
103
129
155
180
206 | 60%
62
93
124
155
186
217
247 | 70% 72 108 144 180 217 253 289 | 80%
82
124
165
206
247
289
330 | 90%
93
139
186
232
278
325
371 | 1009
103
155
206
258
309
361
412 | Table C. 49: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Kittiwa | ıke
n migrat | tion | | | | (% of d | isplaced | | ality leve
t risk of | | ty) | | | | |----------------------------------|-----------------|------|----|----|-----|---------|----------|-----|-------------------------|-----|-----|-----|-----|------| | • | IIIIIgrai | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 14 | 18 | 22 | 25 | 29 | 32 | 36 | | level | 15% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 32 | 38 | 43 | 49 | 54 | | | 20% | 1 | 1 | 4 | 7 | 14 | 22 | 29 | 36 | 43 | 50 | 58 | 65 | 72 | | Displacement
It risk of displ | 25% | 1 | 2 | 4 | 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | | em
f di | 30% | 1 | 2 | 5 | 11 | 22 | 32 | 43 | 54 | 65 | 76 | 86 | 97 | 108 | | lace
k of | 35% | 1 | 3 | 6 | 13 | 25 | 38 | 50 | 63 | 76 | 88 | 101 | 113 | 126 | | isplarisk | 40% | 1 | 3 | 7 | 14 | 29 | 43 | 58 | 72 | 86 | 101 | 115 | 130 | 144 | | | 60% | 2 | 4 | 11 | 22 | 43 | 65 | 86 | 108 | 130 | 151 | 173 | 194 | 216 | | %) | 80% | 3 | 6 | 14 | 29 | 58 | 86 | 115 | 144 | 173 | 201 | 230 | 259 | 288 | | | 100% | 4 | 7 | 18 | 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | 360 | Table C. 50: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | Kittiwa | | ion | | | | (% of d | | ortality
I birds a | level
t risk of | mortali | ty) | | | | |-----------------------------|----------|-----|----|----|-----|---------|-----|-----------------------|--------------------|---------|-----|-----|-----|------| | Autun | n migrat | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 41 | 50 | 58 | 66 | 74 | 83 | | level | 15% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 74 | 87 | 99 | 112 | 124 | | ace | 20% | 2 | 3 | 8 | 17 | 33 | 50 | 66 | 83 | 99 | 116 | 132 | 149 | 165 | | ent
spla | 25% | 2 | 4 | 10 | 21 | 41 | 62 | 83 | 103 | 124 | 145 | 165 | 186 | 207 | | em
f di | 30% | 2 | 5 | 12 | 25 | 50 | 74 | 99 | 124 | 149 | 173 | 198 | 223 | 248 | | Displacem
t risk of di | 35% | 3 | 6 | 14 | 29 | 58 | 87 | 116 | 145 | 173 | 202 | 231 | 260 | 289 | | ispla
risk | 40% | 3 | 7 | 17 | 33 | 66 | 99 | 132 | 165 | 198 | 231 | 264 | 297 | 330 | | | 60% | 5 | 10 | 25 | 50 | 99 | 149 | 198 | 248 | 297 | 347 | 397 | 446 | 496 | | %) | 80% | 7 | 13 | 33 | 66 | 132 | 198 | 264 | 330 | 397 | 463 | 529 | 595 | 661 | | | 100% | 8 | 17 | 41 | 83 | 165 | 248 | 330 | 413 | 496 | 578 | 661 | 744 | 826 | Table C. 51: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | iwa | ake | | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | v) | | | | |------------------|---|---------------------------------|--|------------------------------------|---|-----------------------------|---|---|--|--|-------------------------------------|---|--|--| | ring | migration | on | | | | (70 01 0 | юріаоса | Sii do d | t Holt Of | ortani | , | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 1 | 1 | 3 | 6 | 12 | 19 | 25 | 31 | 37 | 43 | 49 | 56 | 62 | | acement) | 20% | 1 | 2 | 6 | 12 | 25 | 37 | 49 | 62 | 74 | 86 | 99 | 111 | 124 | | | 30% | 2 | 4 | 9 | 19 | 37 | 56 | 74 | 93 | 111 | 130 | 148 | 167 | 185 | | at risk of displ | 40% | 2 | 5 | 12 | 25 | 49 | 74 | 99 | 124 | 148 | 173 | 198 | 222 | 247 | | of d | 50% | 3 | 6 | 15 | 31 | 62 | 93 | 124 | 154 | 185 | 216 | 247 | 278 | 309 | | sk c | 60% | 4 | 7 | 19 | 37 | 74 | 111 | 148 | 185 | 222 | 259 | 297 | 334 | 371 | | ij | 70% | 4 | 9 | 22 | 43 | 86 | 130 | 173 | 216 | 259 | 303 | 346 | 389 | 432 | | | 80% | 5 | 10 | 25 | 49 | 99 | 148 | 198 | 247 | 297 | 346 | 395 | 445 | 494 | | | | | 11 | 28 | 56 | 111 | 167 | 222 | 278 | 334 | 389 | 445 | 500 | 556 | | %) | 90% | 6 | _ | | | 404 | 405 | 0.47 | 000 | 074 | 400 | 40.4 | | 040 | | | 90%
100%
-legged | 6 | 12 | 31 | 62 | 124
% of dis | | 247
lity lev
birds a | 309
el
at risk o | 371
f morta | 432
lity) | 494 | 556 | 618 | | ack | 100% | 6
kittiwa | 12
ake | 31 | 62 | % of dis | Morta
splaced | lity lev
birds a | el
at risk o | f morta | lity) | | | | | ack
orin | 100%
-legged
g migrat | 6
kittiwa
tion
1% | 12
ake
2% | 31
5% | 62
(% | % of dis |
Morta
splaced
30% | lity lev
birds a | el
at risk o
50% | f morta | lity)
70% | 80% | 90% | 100 | | ack
orin | 100% -legged g migrat | 6 kittiwa tion 1% | 12
ake
2% | 5% 2 | 62
(% | % of dis | Morta
splaced
30%
12 | birds a | el
at risk o
50%
20 | 60% | 70% | 80% 32 | 90% 36 | 100 40 | | ack
orin | 100%
-legged
g migrat | 6
kittiwa
tion
1% | 12 ake 2% 1 2 | 5% 2 4 | 62
(% | 20% 8 16 | Morta
splaced
30% | lity lev
birds a | el
at risk o
50% | 60%
24
48 | lity)
70% | 80%
32
64 | 90% | 100 | | ack
orin | 100% -legged g migrat | 6 kittiwa tion 1% | 12
ake
2% | 5% 2 | 62
(% | % of dis | Morta
splaced
30%
12 | birds a | el
at risk o
50%
20 | 60% | 70% | 80% 32 | 90% 36 | 100 40 80 | | ack
orin | 100% -legged g migrat 10% 20% | 6 kittiwa tion 1% 0 1 | 12 ake 2% 1 2 | 5% 2 4 | 62
(%
10%
4
8 | 20% 8 16 | Morta
splaced
30%
12
24 | birds a 40% 16 32 | 50%
20
40 | 60%
24
48 | 70%
28
56 | 80%
32
64 | 90% 36 72 | 100
40
80
119 | | ack
orin | 100% -legged g migrat 10% 20% 30% | 6 kittiwa tion 1% 0 1 | 12 ake 2% 1 2 2 | 5%
2
4
6 | 10%
4
8
12 | % of dis | Morta splaced 30% 12 24 36 | 40%
16
32
48 | 50%
20
40
60 | 60%
24
48
72 | 70%
28
56
84 | 80% 32 64 96 | 90%
36
72
107 | 100
40
80
119
159 | | ack
orin | 100% -legged g migrat 10% 20% 30% 40% | 6 kittiwa tion 1% 0 1 1 2 | 12 ake 2% 1 2 2 3 | 5%
2
4
6
8 | 10%
4
8
12
16 | 20% 8 16 24 32 | Morta
splaced
30%
12
24
36
48 | 40%
16
32
48
64 | 50%
20
40
60
80 | 60%
24
48
72
96 | 70%
28
56
84
111 | 80%
32
64
96
127 | 90%
36
72
107
143 | 100
40
80
119
159 | | ack
orin | 100% -legged g migrat 10% 20% 30% 40% 50% | 6 kittiwa tion 1% 0 1 1 2 2 | 12 ake 2% 1 2 2 3 4 | 5%
2
4
6
8
10 | 10%
4
8
12
16
20 | 20% 8 16 24 32 40 | Morta
splaced
30%
12
24
36
48
60 | 40%
16
32
48
64
80 | 50%
20
40
60
80
100 | 60%
24
48
72
96
119 | 70%
28
56
84
111
139 | 80%
32
64
96
127
159 | 90%
36
72
107
143
179 | 100 40 | | ack | 100% -legged g migrat 10% 20% 30% 40% 50% 60% | 6 kittiwa tion 1% 0 1 1 2 2 2 | 12 ake 2% 1 2 2 3 4 5 | 5%
2
4
6
8
10 | 10%
4
8
12
16
20
24 | 20% 8 16 24 32 40 48 | Morta
splaced
30%
12
24
36
48
60
72 | 40%
16
32
48
64
80
96 | 50%
20
40
60
80
100
119 | 60%
24
48
72
96
119
143 | 70% 28 56 84 111 139 167 | 80%
32
64
96
127
159
191 | 90%
36
72
107
143
179
215 | 100
40
80
119
159
199
239 | | ack
orin | 100% -legged g migrat 10% 20% 30% 40% 50% 60% 70% | 6 kittiwa tion 1% 0 1 1 2 2 2 3 | 12
ake
2%
1
2
2
3
4
5
6 | 5%
2
4
6
8
10
12 | 10%
4
8
12
16
20
24
28 | 20% 8 16 24 32 40 48 56 | Morta
splaced
30%
12
24
36
48
60
72
84 | 40% 16 32 48 64 80 96 111 | 50%
20
40
60
80
100
119
139 | 60%
24
48
72
96
119
143
167 | 70% 28 56 84 111 139 167 195 | 80%
32
64
96
127
159
191
223 | 90%
36
72
107
143
179
215
251 | 100
40
80
119
159
199
239
279 | Table C. 52: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Spring migration (operations and maintenance phase). | ittiw | ake | | | | | | M | ortality | level | | | | | | |-----------------|-----------------|---|-----------------------------------|--|--|---------------------------|--|---|--|--|---|---|---|--| | | | | | | | (% of d | isplaced | birds a | t risk of | mortalit | y) | | | | | prinç | g migration | | | | | | | | | | | | | | | ∵ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 1 | 2 | 6 | 12 | 24 | 37 | 49 | 61 | 73 | 86 | 98 | 110 | 122 | | acement) | 20% | 2 | 5 | 12 | 24 | 49 | 73 | 98 | 122 | 147 | 171 | 196 | 220 | 245 | | | 30% | 4 | 7 | 18 | 37 | 73 | 110 | 147 | 183 | 220 | 257 | 294 | 330 | 367 | | isp | 40% | 5 | 10 | 24 | 49 | 98 | 147 | 196 | 245 | 294 | 343 | 391 | 440 | 489 | | at risk of disp | 50% | 6 | 12 | 31 | 61 | 122 | 183 | 245 | 306 | 367 | 428 | 489 | 550 | 612 | | i X | 60% | 7 | 15 | 37 | 73 | 147 | 220 | 294 | 367 | 440 | 514 | 587 | 661 | 734 | | Z :E | 70% | 9 | 17 | 43 | 86 | 171 | 257 | 343 | 428 | 514 | 599 | 685 | 771 | 856 | | | 80% | 10 | 20 | 49 | 98 | 196 | 294 | 391 | 489 | 587 | 685 | 783 | 881 | 979 | | %) | 90% | 11 | 22 | 55 | 110 | 220 | 330 | 440 | 550 | 661 | 771 | 881 | 991 | 1101 | | | | | | | | | | 1400 | 1610 | 1724 | 056 | 1070 | 11101 | 14222 | | le el | 100% | 12 | 24 | 61 | 122 | 245 | 367 | 489 | 612 | 734 | 856 | 979 | 1101 | 1223 | | lack | 100%
-legged | | | 61 | <u> </u> | | Morta | lity lev | el | | | 1919 | 11101 | 1223 | | lack | | | | <u> 61</u> | <u> </u> | | | lity lev | el | | | 919 | 1101 | 1223 | | | | kittiwa | | <u> 61</u> | <u> </u> | | Morta | lity lev | el | | | 373 | 11101 | 1223 | | prin | degged | kittiwa | | 5% | <u> </u> | | Morta | lity lev | el | | | 80% | 90% | 100% | | prin | degged | kittiwa
tion | ake | | (9 | % of dis | Morta
splaced | lity lev
birds a | el
at risk o | f morta | lity) | | | | | prin | degged | kittiwa
tion
1% | ake
2% | 5% | 10% | % of dis | Morta
splaced
30% | lity lev
birds a | el
at risk o
50% | f morta | lity)
70% | 80% | 90% | 100% | | prin | degged | kittiwa
tion
1% | 2% | 5% | 10%
8 | % of dis | Morta
splaced
30%
24 | birds a | el
at risk o
50%
40 | f morta 60% 48 | 70% 56 | 80% 64 | 90% 72 | 100 % | | prin | degged | kittiwa
tion
1%
1
2 | 2%
2
3 | 5% 4 8 | 10%
8
16 | 20% 16 32 | Morta splaced 30% 24 48 | birds a 40% 32 64 | 50% 40 80 | 60%
48
96 | 70% 56 112 | 80% 64 128 | 90% 72 143 | 100%
80
159 | | prin | degged | kittiwa
tion
1%
1
2
2 | 2%
2
3
5 | 5% 4 8 12 | 10%
8
16
24 | 20% 16 32 48 | Morta splaced 30% 24 48 72 | 40%
32
64
96 | 50%
40
80
120 | 60%
48
96
143 | 70%
56
112
167 | 80% 64 128 191 | 90%
72
143
215 | 100%
80
159
239 | | prin | degged | kittiwa
tion
1%
1
2
2
3 | 2%
2
3
5
6 | 5%
4
8
12
16 | 10%
8
16
24
32 | 20% 16 32 48 64 | Morta
splaced
30%
24
48
72
96 | 40%
32
64
96
128 | 50%
40
80
120
159 | 60%
48
96
143
191 | 70%
56
112
167
223 | 80%
64
128
191
255 | 90%
72
143
215
287 | 100%
80
159
239
319 | | prin | degged | tion 1% 1 2 2 3 4 | 2%
2
3
5
6
8 | 5%
4
8
12
16
20 | 10%
8
16
24
32
40 | 20% 16 32 48 64 80 | Morta
splaced
30%
24
48
72
96
120 | 40%
32
64
96
128
159 | 50%
40
80
120
159
199 | 60%
48
96
143
191
239 | 70%
56
112
167
223
279 | 80%
64
128
191
255
319 | 90%
72
143
215
287
359 | 100%
80
159
239
319
399 | | prin
eut) | degged | kittiwa
tion
1%
1
2
2
3
4
5 | 2%
2
3
5
6
8
10 | 5%
4
8
12
16
20
24 | 10%
8
16
24
32
40
48 | 20% 16 32 48 64 80 96 | Morta
splaced
30%
24
48
72
96
120
143 | 40%
32
64
96
128
159 | 50%
40
80
120
159
199
239 | 60%
48
96
143
191
239
287 | 70%
56
112
167
223
279
335 | 80%
64
128
191
255
319
383 | 90%
72
143
215
287
359
430 | 100%
80
159
239
319
399
478 | | prin | degged | tion 1% 1 2 2 3 4 5 6 | 2%
2
3
5
6
8
10 | 5%
4
8
12
16
20
24
28 | 10%
8
16
24
32
40
48
56 | 20% 16 32 48 64 80 96 112 | Morta
splaced
30%
24
48
72
96
120
143
167 | 40%
32
64
96
128
159
191
223 | 50%
40
80
120
159
199
239
279 | 60%
48
96
143
191
239
287
335 | 70%
56
112
167
223
279
335
391 | 80%
64
128
191
255
319
383
446 | 90%
72
143
215
287
359
430
502 | 100%
80
159
239
319
399
478
558 | Table C. 53: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Cittiwa | ake | | | | | (0) | | ortality | | | | | | | |---------------------------------|---|---------------------------------------|-------------------
-------------------------------------|--|--------------------------|--|--|--|---|--------------------------------------|--|--|---| | Breed | lina | | | | | (% of d | isplaced | l birds a | t risk of | mortalit | (y) | | | | | | <u>9</u> | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 | 21 | | level
acemo | 20% | 0 | 1 | 2 | 4 | 8 | 12 | 17 | 21 | 25 | 29 | 33 | 37 | 42 | | | 30% | 1 | 1 | 3 | 6 | 12 | 19 | 25 | 31 | 37 | 44 | 50 | 56 | 62 | | Displacement
at risk of disp | 40% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 83 | | e d | 50% | 1 | 2 | 5 | 10 | 21 | 31 | 42 | 52 | 62 | 73 | 83 | 94 | 104 | | sk o | 60% | 1 | 2 | 6 | 12 | 25 | 37 | 50 | 62 | 75 | 87 | 100 | 112 | 125 | | ris | 70% | 1 | 3 | 7 | 15 | 29 | 44 | 58 | 73 | 87 | 102 | 116 | 131 | 146 | | (% at | 80% | 2 | 3 | 8 | 17 | 33 | 50 | 67 | 83 | 100 | 116 | 133 | 150 | 166 | | _ | 90% | 2 | 4 | 9 | 19 | 37 | 56 | 75 | 94 | 112 | 131 | 150 | 168 | 187 | | 9 | | | 4 | 4.0 | 0.4 | 40 | 00 | 00 | 404 | 405 | 4 40 | | | | | | 100%
c-legged | 2
kittiw | 4
ake | 10 | 21 | 42
% of dis | | 83
ality lev | | 125 | 146 | 166 | 187 | 208 | | Black | 100%
c-legged | | | 10 | | | Morta | ality lev | | | | 166 | 187 | 208 | | Black
Breed | 100%
c-legged | | | 10
5% | 10% | | Morta | ality lev | el | | | 166
80 % | 90% | | | Black
Breed | 100%
c-legged | kittiw | ake | | (9 | % of dis | Morta
splaced | ality lev
birds a | el
at risk c | f morta | lity) | | | | | Black
Breed | 100%
s-legged
ding | kittiw | ake
2% | 5% | 10% | % of dis | Morta
splaced
30% | ality lev
birds a | el
at risk o | f morta | 70% | 80% | 90% | 1009 | | Black
Breed | 100% ding 10% | 1% 0 | 2%
1 | 5% | 10% 5 | % of dis | Morta
splaced
30% | birds a | el
at risk o
50%
25 | f morta 60% 29 | 70% | 80% 39 | 90% | 100 9 | | Black
Breed | 100%
ding
10%
20% | 1%
0
1 | 2%
1
2 | 5% 2 5 | 10%
5
10 | 20% 10 20 | Morta splaced 30% 15 29 | birds a 40% 20 39 | el at risk of 50% 25 49 | 60%
29
59 | 70% 34 69 | 80% 39 79 | 90% 44 88 | 100 9
49
98 | | Black
Breed | 100%
c-legged
ding
10%
20%
30% | 1%
0
1 | 2%
1
2
3 | 5% 2 5 7 | 10%
5
10
15 | % of dis | Morta
splaced
30%
15
29
44 | 40% 20 39 59 | 50%
25
49
74 | 60%
29
59
88 | 70%
34
69
103 | 80% 39 79 118 | 90% 44 88 133 | 1009
49
98
147 | | Black
Breed | 100%
c-legged
ding
10%
20%
30%
40% | 1% 0 1 1 2 | 2% 1 2 3 4 | 5%
2
5
7
10 | 10%
5
10
15
20 | 20% 10 20 29 39 | Morta
splaced
30%
15
29
44
59 | 40%
20
39
59
79 | 50%
25
49
74
98 | 60%
29
59
88
118 | 70%
34
69
103
137 | 80%
39
79
118
157 | 90%
 44
 88
 133
 177 | 100%
49
98
147
196 | | Black
Breed | 100%
c-legged
ding
10%
20%
30%
40%
50% | 1% 0 1 1 2 2 | 2% 1 2 3 4 5 | 5%
2
5
7
10
12 | 10%
5
10
15
20
25 | 20% 10 20 29 39 49 | Morta
splaced
30%
15
29
44
59
74 | 40% 20 39 59 79 98 | 50%
25
49
74
98
123 | 60%
29
59
88
118
147 | 70%
34
69
103
137
172 | 80%
39
79
118
157
196 | 90%
44
88
133
177
221 | 1009
49
98
147
196
246 | | Uisplacement level | 100%
c-legged
ding
10%
20%
30%
40%
50%
60% | 1% 0 1 1 2 2 3 | 2% 1 2 3 4 5 | 5%
2
5
7
10
12
15 | 10%
5
10
15
20
25
29 | 20% 10 20 29 39 49 59 | Morta
splaced
30%
15
29
44
59
74
88 | 40%
20
39
59
79
98
118 | 50%
25
49
74
98
123
147 | 60%
29
59
88
118
147 | 70% 34 69 103 137 172 206 | 80%
39
79
118
157
196
236 | 90%
44
88
133
177
221
265 | 1009
49
98
147
196
246
295 | | Black
Breed | 100%
c-legged
ding
10%
20%
30%
40%
50%
60%
70% | 1%
0
1
1
2
2
3
3 | 2% 1 2 3 4 5 6 7 | 5%
2
5
7
10
12
15 | 10% 5 10 15 20 25 29 34 | 20% 10 20 29 39 49 59 69 | Morta
splaced
30%
15
29
44
59
74
88
103 | 40% 20 39 59 79 98 118 137 | 50%
25
49
74
98
123
147
172 | 60%
29
59
88
118
147
177
206 | 70% 34 69 103 137 172 206 241 | 80%
39
79
118
157
196
236
275 | 90%
44
88
133
177
221
265
309 | 100%
49
98
147
196
246
295
344 | Table C. 54: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during the breeding season (operations and maintenance phase). | Kittiwa | ake | | | | | | M | ortality | level | | | | | | |--|-------------|---------|-----|------|------|----------|---------|-----------|-----------|----------|-------------|------|-----|-------| | | | | | | | (% of d | splaced | birds a | t risk of | mortalit | y) | | | | | Breed | in <u>g</u> | | | | | | | | | | | | | | | ∵ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | en | 10% | 1 | 1 | 3 | 6 | 11 | 17 | 22 | 28 | 34 | 39 | 45 | 50 | 56 | | level
acement) | 20% | 1 | 2 | 6 | 11 | 22 | 34 | 45 | 56 | 67 | 78 | 89 | 101 | 112 | | | 30% | 2 | 3 | 8 | 17 | 34 | 50 | 67 | 84 | 101 | 117 | 134 | 151 | 168 | | neu
isp | 40% | 2 | 4 | 11 | 22 | 45 | 67 | 89 | 112 | 134 | 157 | 179 | 201 | 224 | | Sen
of d | 50% | 3 | 6 | 14 | 28 | 56 | 84 | 112 | 140 | 168 | 196 | 224 | 252 | 279 | | olac
sk c | 60% | 3 | 7 | 17 | 34 | 67 | 101 | 134 | 168 | 201 | 235 | 268 | 302 | 335 | | Displacement
at risk of disp | 70% | 4 | 8 | 20 | 39 | 78 | 117 | 157 | 196 | 235 | 274 | 313 | 352 | 391 | | | 80% | 4 | 9 | 22 | 45 | 89 | 134 | 179 | 224 | 268 | 313 | 358 | 402 | 447 | | %) | 90% | 5 | 10 | 25 | 50 | 101 | 151 | 201 | 252 | 302 | 352 | 402 | 453 | 503 | | Disale | 100% | 6 | 11 | 28 | 56 | 112 | 168 | 224 | 279 | 335 | 391 | 447 | 503 | 559 | | Віаск | -legged | KITTIWa | ike | | 40 | | | ility lev | | | | | | | | | | | | | (% | % of dis | placed | birds a | ıt risk o | f morta | lity) | | | | | Breed | ling | 404 | | =0.4 | 400/ | 2001 | 2001 | 100/ | =/ | 2001 | 00/ | 000/ | | 4000/ | | ÷ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | en | 10% | 1 | 2 | 5 | 10 | 21 | 31 | 41 | 52 | 62 | 72 | 82 | 93 | 103 | | vel | 20% | 2 | 4 | 10 | 21 | 41 | 62 | 82 | 103 | 124 | 144 | 165 | 186 | 206 | | 1 <u>e</u> | 30% | 3 | 6 | 15 | 31 | 62 | 93 | 124 | 155 | 186 | 217 | 247 | 278 | 309 | | ent | 40% | 4 | 8 | 21 | 41 | 82 | 124 | 165 | 206 | 247 | 289 | 330 | 371 | 412 | | em
f di | 50% | 5 | 10 | 26 | 52 | 103 | 155 | 206 | 258 | 309 | 361 | 412 | 464 | 516 | | ac | 60% | 6 | 12 | 31 | 62 | 124 | 186 | 247 | 309 | 371 | 433 | 495 | 557 | 619 | | Displacement level
at risk of displacement) | 70% | 7 | 14 | 36 | 72 | 144 | 217 | 289 | 361 | 433 | 505 | 577 | 650 | 722 | | at a | 80% | 8 | 16 | 41 | 82 | 165 | 247 | 330 | 412 | 495 | 577 | 660 | 742 | 825 | | % | 90% | 9 | 19 | 46 | 93 | 186 | 278 | 371 | 464 | 557 | 650 | 742 | 835 | 928 | | | 100% | 10 | 21 | 52 | 103 | 206 | 309 | 412 | 516 | 619 | 722 | 825 | 928 | 1,031 | Table C. 55: LCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Kittiwa | ike
n migrat | ion | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | y) | | | | |---------------------------|-----------------|-----|----|----|-----|---------|-----|---------------------|--------------------|----------|-----|-----|-----|------| | | J a | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 14 | 18 | 22 | 25 | 29 | 32 | 36 | | level | 20% | 1 | 1 | 4 | 7 | 14 | 22 | 29 | 36 | 43 | 50 | 58 | 65 | 72 | | | 30% | 1 | 2 | 5 | 11 | 22 | 32 | 43 | 54 | 65 | 76 | 86 | 97 | 108 | | ent | 40% | 1 | 3 | 7 | 14 | 29 | 43 | 58 | 72 | 86 | 101 | 115 | 130 | 144 | | em
di | 50% | 2 | 4 | 9 | 18 | 36 | 54 | 72 | 90 | 108 | 126 | 144 | 162 | 180 | | Displacem
t risk of di | 60% | 2 | 4 | 11 | 22 | 43 | 65 | 86 | 108 | 130 | 151 | 173 | 194 | 216 | | ispla
risk | 70% | 3 | 5 | 13 | 25 | 50 | 76 | 101 | 126 | 151 | 176 | 201 | 227 | 252 | | at D | 80% | 3 | 6 | 14 | 29 | 58 | 86 | 115 | 144 | 173 | 201 | 230 | 259 | 288 | | %) | 90% | 3 | 6 | 16 | 32 | 65 | 97 | 130 | 162 | 194 | 227 | 259 | 291 | 324 | | | 100% | 4 | 7 | 18 | 36 | 72 | 108 | 144 | 180 | 216 | 252 | 288 | 324 | 360 | Table C. 56: UCI predicted black-legged kittiwake mortality for the Mona Array Area plus 2 km buffer during Autumn migration (operations and maintenance phase). | Kittiwa | | | | | | (% of di | | ortality I
birds at | evel
risk of | mortality | /) | | | | |---------------------------|----------|-----|----|----|-----|----------|-----|------------------------|-----------------|-----------|------------|-----|-----|------| | Autum | n migrat | ion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 1 | 2 | 4
| 8 | 17 | 25 | 33 | 41 | 50 | 58 | 66 | 74 | 83 | | level | 20% | 2 | 3 | 8 | 17 | 33 | 50 | 66 | 83 | 99 | 116 | 132 | 149 | 165 | | | 30% | 2 | 5 | 12 | 25 | 50 | 74 | 99 | 124 | 149 | 173 | 198 | 223 | 248 | | ent | 40% | 3 | 7 | 17 | 33 | 66 | 99 | 132 | 165 | 198 | 231 | 264 | 297 | 330 | | em
f di | 50% | 4 | 8 | 21 | 41 | 83 | 124 | 165 | 207 | 248 | 289 | 330 | 372 | 413 | | Displacem
t risk of di | 60% | 5 | 10 | 25 | 50 | 99 | 149 | 198 | 248 | 297 | 347 | 397 | 446 | 496 | | ispla
risk | 70% | 6 | 12 | 29 | 58 | 116 | 173 | 231 | 289 | 347 | 405 | 463 | 520 | 578 | | at D | 80% | 7 | 13 | 33 | 66 | 132 | 198 | 264 | 330 | 397 | 463 | 529 | 595 | 661 | | %) | 90% | 7 | 15 | 37 | 74 | 149 | 223 | 297 | 372 | 446 | 520 | 595 | 669 | 744 | | | 100% | 8 | 17 | 41 | 83 | 165 | 248 | 330 | 413 | 496 | 578 | 661 | 744 | 826 | # C.6 Manx shearwater Table C. 57: LCI predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | | Shearwat | | | | (% of d | isplaced | Mortalit
I birds a | • | mortalit | ty) | | | | | |---------------------------|----------|----|----|----|---------|----------|-----------------------|-----|----------|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent
spl | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
di | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
t risk of di | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | at a | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 58 UCI predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during Spring migration (construction and decommissioning). | | Shearwat
migratio | | | | (% of d | isplaced | Mortalit
birds a | _ | mortalit | у) | | | | | |--------------------------------|----------------------|----|----|----|---------|----------|---------------------|-----|----------|-----|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | 20% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | Displacemen
at risk of disp | 25% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | | e m
f | 30% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | lac
k o | 35% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | | isp
ris | 40% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | | | 60% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | %) | 80% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | | | 100% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Manx | shearwa | iter | | | | | | Morta | lity leve | d . | | | | | |--------------|---------|------|----|----|-----|----------|---------|---------|------------|---------|-----|-----|-----|------| | | | | | | | (% of di | splaced | birds a | ıt risk of | mortali | ty) | | | | | Spring | migrati | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | 10% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | <u> </u> | 15% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | level | 20% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | | | 25% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | me | 30% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | | ace | 35% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 7 | | Displacement | 40% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | | Ö | 60% | 0 | 0 | 1 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | 80% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | | | 100% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 10 | 11 | 13 | 15 | 17 | 19 | Table C. 59 LCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Manx S | Shearwa | ter | | | (% of d | lisplaced | | ty level
at risk o | f mortal | ity) | | | | | |----------------------------|---------|-----|----|----|---------|-----------|-----|-----------------------|----------|------|-----|-----|-----|------| | | iig | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 27 | 30 | 33 | | level | 15% | 1 | 1 | 3 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | | ace | 20% | 1 | 1 | 3 | 7 | 13 | 20 | 27 | 33 | 40 | 47 | 53 | 60 | 67 | | ment
displa | 25% | 1 | 2 | 4 | 8 | 17 | 25 | 33 | 42 | 50 | 58 | 67 | 75 | 84 | | em
f di | 30% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | lace
k of | 35% | 1 | 2 | 6 | 12 | 23 | 35 | 47 | 58 | 70 | 82 | 94 | 105 | 117 | | Displacem
It risk of di | 40% | 1 | 3 | 7 | 13 | 27 | 40 | 53 | 67 | 80 | 94 | 107 | 120 | 134 | | at D | 60% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 201 | | %) | 80% | 3 | 5 | 13 | 27 | 53 | 80 | 107 | 134 | 160 | 187 | 214 | 241 | 267 | | | 100% | 3 | 7 | 17 | 33 | 67 | 100 | 134 | 167 | 201 | 234 | 267 | 301 | 334 | Table C. 60: UCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during the breeding season (construction and decommissioning). | Manx S | Shearwa | ter | | | (% of | displace | | ity level
at risk o | | ity) | | | | | |---------------------------|---------|-----|----|-----|-------|----------|-----|------------------------|------|------|------|------|------|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 6 | 16 | 32 | 64 | 95 | 127 | 159 | 191 | 223 | 254 | 286 | 318 | | level | 15% | 5 | 10 | 24 | 48 | 95 | 143 | 191 | 238 | 286 | 334 | 381 | 429 | 477 | | | 20% | 6 | 13 | 32 | 64 | 127 | 191 | 254 | 318 | 381 | 445 | 509 | 572 | 636 | | ent | 25% | 8 | 16 | 40 | 79 | 159 | 238 | 318 | 397 | 477 | 556 | 636 | 715 | 795 | | em
f di | 30% | 10 | 19 | 48 | 95 | 191 | 286 | 381 | 477 | 572 | 668 | 763 | 858 | 954 | | Displacem
t risk of di | 35% | 11 | 22 | 56 | 111 | 223 | 334 | 445 | 556 | 668 | 779 | 890 | 1001 | 1113 | | ispla
risk | 40% | 13 | 25 | 64 | 127 | 254 | 381 | 509 | 636 | 763 | 890 | 1017 | 1144 | 1272 | | at 🖂 | 60% | 19 | 38 | 95 | 191 | 381 | 572 | 763 | 954 | 1144 | 1335 | 1526 | 1717 | 1907 | | %) | 80% | 25 | 51 | 127 | 254 | 509 | 763 | 1017 | 1272 | 1526 | 1780 | 2034 | 2289 | 2543 | | | 100% | 32 | 64 | 159 | 318 | 636 | 954 | 1272 | 1589 | 1907 | 2225 | 2543 | 2861 | 3179 | Table C. 61: LCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during Autumn migration (construction and decommissioning). | | Shearwat
n migrat | | | | (% of c | lisplaced | | ity level
at risk o | f mortal | ity) | | | | | |---------------------------------|----------------------|----|----|----|---------|-----------|-----|------------------------|----------|------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | level | 15% | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 | 9 | | t le | 20% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | | Displacement
t risk of displ | 25% | 0 | 0 | 1 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 12 | 14 | 15 | | em
f | 30% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | lace
k of | 35% | 0 | 0 | 1 | 2 | 4 | 6 | 8 | 11 | 13 | 15 | 17 | 19 | 21 | | ispla
risk | 40% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 19 | 22 | 24 | | a c | 60% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | %) | 80% | 0 | 1 | 2 | 5 | 10 | 15 | 19 | 24 | 29 | 34 | 39 | 44 | 48 | | | 100% | 1 | 1 | 3 | 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 55 | 61 | Table C. 62: UCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer Autumn migration (construction and decommissioning). | nx | Shearwa | iter _ | | | | | Morta | lity level | | | | | | | |-----------------|--|------------------------------|----------------------------------|-----------------------------|--|-------------------------------|----------------------|-------------------------------------|-------------------------------|------------------------------|--------------------|------------------------------------|-------------------------------------|---| | | | | | | (% of | displace | d birds | at risk c | of mortal | ity) | | | | | | ıtum | nn migra | tion | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 19 | 22 | 26 | 30 | 33 | 37 | | acement) | 15% | 1 | 1 | 3 | 6 | 11 | 17 | 22 | 28 | 33 | 39 | 45 | 50 | 56 | | | 20% | 1 | 1 | 4 | 7 | 15 | 22 | 30 | 37 | 45 | 52 | 59 | 67 | 74 | | at risk of disp | 25% | 1 | 2 | 5 | 9 | 19 | 28 | 37 | 46 | 56 | 65 | 74 | 83 | 93 | | ę d | 30% | 1 | 2 | 6 | 11 | 22 | 33 | 45 | 56 | 67 | 78 | 89 | 100 | 111 | | × | 35% | 1 | 3 | 6 | 13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 117 | 130 | | ris | 40% | 1 | 3 | 7 | 15 | 30 | 45 | 59 | 74 | 89 | 104 | 119 | 134 | 148 | | | 60% | 2 | 4 | 11 | 22 | 45 | 67 | 89 | 111 | 134 | 156 | 178 | 200 | 223 | | | / | 3 | 6 |
15 | 30 | 59 | 89 | 119 | 148 | 178 | 208 | 237 | 267 | 297 | | %) | 80% | 3 | | _ | | _ | _ | _ | - | | | | | | | | 80%
100%
shearwa | 4 | 7 | 19 | 37 | 74 | 111 | 148
Morta | 186 | 223
I | 260 | 297 | 334 | 371 | | | 100% | 4 | | _ | | 74 | | Morta | 186
lity leve | I | | 297 | 334 | 371 | | anx | 100% | 4
ater | | _ | | 74 | | Morta | lity leve | I | | 297 | 334 | 371 | | anx | 100%
shearwa | 4
ater | | _ | | 74 | | Morta | lity leve
t risk of
50% | I | | 80% | 90% | | | anx | 100%
shearwa | 4
ater
ation | 7 | 19 | 37 | 74
(% of di | splaced | Morta
I birds a | lity levent risk of 50% | l
mortali | ty) | 80% | • | | | anx | 100%
shearwa | 4 ater ation 1% | 7
2% | 19
5% | 37
10% | 74
(% of di
20% | splaced | Morta l birds a 40% 2 2 | lity leve
t risk of
50% | 60%
2
4 | 70% 3 4 | 80%
3
5 | 90% | 100% | | anx | 100% shearwa | 4 ater ation 1% | 2% | 5%
0 | 37
10% | 74
(% of di
20% | 30% | Morta l birds a 40% | t risk of 50% 2 3 4 | 60%
2
4
5 | 70% | 80% 3 5 6 | 90% | 100 % | | anx | 100%
shearwa
nn migra
10%
15% | 4 ater 1% 0 0 | 2% 0 0 | 5%
0
0 | 37
10%
0 | 74 (% of di 20% 1 1 2 2 | 30% 1 2 2 3 | Morta l birds a 40% 2 2 3 4 | 50%
2
3
4
5 | 60%
2
4
5
6 | 70% 3 4 5 7 | 80% 3 5 6 8 | 90% 4 5 | 100%
 4
 6
 8
 10 | | anx | 100%
shearwa
nn migra
10%
15%
20% | 4 ater ation 1% 0 0 0 | 2% 0 0 0 | 5%
0
0 | 10%
0
1 | 74 (% of di 20% 1 1 2 | 30%
1
2
2 | Morta l birds a 40% 2 2 3 | t risk of 50% 2 3 4 | 60%
2
4
5 | 70%
3
4
5 | 80% 3 5 6 | 90% 4 5 7 | 100%
4
6
8 | | anx | 100%
shearwa
nn migra
10%
15%
20%
25% | 4 ater 1% 0 0 0 0 0 0 0 | 2% 0 0 0 0 | 5%
0
0 | 10%
0
1
1 | 74 (% of di 20% 1 1 2 2 | 30% 1 2 2 3 | Morta l birds a 40% 2 2 3 4 | 50%
2
3
4
5 | 60%
2
4
5
6 | 70% 3 4 5 7 | 80% 3 5 6 8 | 90%
4
5
7
9 | 100%
 4
 6
 8
 10 | | anx | 100%
shearwa
10%
15%
20%
25%
30% | 4 ater 1% 0 0 0 0 0 | 2% 0 0 0 0 0 | 5%
0
0 | 10%
0
1
1
1 | 74 (% of di 20% 1 1 2 2 2 | 30% 1 2 2 3 4 | Morta l birds a 40% 2 2 3 4 5 | 50%
2
3
4
5
6 | 60%
2
4
5
6
7 | 70% 3 4 5 7 | 80%
3
5
6
8
9 | 90%
4
5
7
9
11 | 100%
4
6
8
10
12 | | anx | 100% shearway 10% 15% 20% 25% 30% 35% | 4 ater 1% 0 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
1 | 10%
0
1
1
1
1 | 74 (% of di 20% 1 1 2 2 2 2 3 | 30% 1 2 2 3 4 4 | Morta l birds a 40% 2 2 2 3 4 5 5 | 50% 2 3 4 5 6 7 | 60% 2 4 5 6 7 | 70% 3 4 5 7 8 10 | 80%
3
5
6
8
9 | 90%
4
5
7
9
11 | 100%
4
6
8
10
12
14 | | anx | 100%
shearwa
10%
15%
20%
25%
30%
35%
40% | 4 ater 1% 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
1 | 10%
0
1
1
1
1
1
2 | 74 (% of di 20% 1 1 2 2 2 3 3 | 30% 1 2 2 3 4 4 5 | Morta l birds a 40% 2 2 3 4 5 5 6 | 50% 2 3 4 5 6 7 | 60% 2 4 5 6 7 8 | 70% 3 4 5 7 8 10 | 80%
3
5
6
8
9
11 | 90%
4
5
7
9
11
12 | 100%
4
6
8
10
12
14
16 | Table C. 63: LCI predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during Spring migration (operation). | | Shearwa | | | | | (% of di | Mo
isplaced | ortality l
birds a | | mortalit | у) | | | | |----------------------------|-----------|----------|----|----|-----|----------|----------------|-----------------------|-----|----------|-----|-----|-----|------| | | migration | on
1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacem
It risk of di | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ë ₩ | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 64: UCI predicted Manx shearwater mortality for the Mona Array Area plus 2 km buffer during Spring migration (operation). | lanx | Shearwa | ter | | | | (% of d | | lortality | level
t risk of | mortalit | v) | | | | |---------------------------------|---|---------------------------------|----------------------------------|----------------------------------|-----------------------------------|---|--------------------|----------------------------------|-------------------------|--------------------|--------------------------|---|------------------------------------|--| | Spring | g migrati | on | | | | (// 5.1 5. | | | | | · 3 7 | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50 % | 60% | 70% | 80% | 90% | 100% | | level
acement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | | | 30% | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | | Displacement
at risk of disp | 40% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | | Displacement
trisk of disp | 50% | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | | ik c | 60% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | ris
ris | 70% | 0 | 0 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 | 7 | | | 80% | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 | | | | 0 | 0 | 0 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | | %) | 90% | | | | - | | | 1 | I = | ۱, | I | ۱, | _ | 4.0 | | | 90%
100%
shearwa | 0 | 0 | 0 | 1 | 2 | 3 | | 5
lity leve | | 7 | 8 | 9 | 10 | | Manx | 100% | 0
ater | | 0 | 1 | | | Morta | | I | , | 8 | 9 | 10 | | Manx | 100%
shearwa | 0
ater | | 5% | 10% | | | Morta | lity leve | I | , | 8
80% | 90% | 10
100% | | Manx | 100%
shearwa | 0
ater
ion | 0 | | | (% of di | splaced | Morta
I birds a | lity leve
t risk of | l
mortali | ty) | | | | | Manx
Spring | 100%
shearwa | 0
ater
ion
1% | 2% | 5% | 10% | (% of di | splaced | Morta
I birds a | lity leve
t risk of | l
mortali | ty) | 80% | 90% | 100% | | Manx
Spring | 100% shearway migrat | 0 ater ion 1% 0 | 2%
0 | 5% | 10% | (% of di 20% 0 | splaced | Morta l birds a 40% | lity levent risk of 50% | mortali 60% | 70% | 80% 2 | 90% 2 | 1 00 % | | Manx
Spring | 100% shearway migrate 10% 20% | 0 ater ion 1% 0 0 | 2%
0
0 | 5%
0 | 10% 0 0 | (% of di
20%
0 | 30% 1 | Morta l birds a 40% 1 2 | t risk of 50% 1 2 | 60%
1
2 | 70% 1 3 | 80% 2 3 | 90% 2 3 | 100%
2
4 | | Manx
Spring | 100% shearway migrat 10% 20% 30% | 0 ater ion 1% 0 0 0 | 2%
0
0
0 | 5% 0 0 0 | 10%
0
0 | (% of di
20% 0 1 | 30% 1 1 2 | Morta l birds a 40% 1 2 2 | t risk of 50% 1 2 3 | 60%
1
2
3 | ty) 70% 1 3 4 | 80% 2 3 5 | 90% 2 3 5 | 100%
2
4
6 | | Manx
Spring | 100% shearway 10% 10% 20% 30% 40% | 0 ater ion 1% 0 0 0 0 0 | 2%
0
0
0
0 | 5% 0 0 0 0 | 10%
0
0 | (% of di
20%
0
1
1
2 | 30% 1 1 2 2 | Morta birds a 40% 1 2 2 3 | 50% 1 2 3 4 | 60% 1 2 3 5 | 70% 1 3 4 5 | 80%
2
3
5
6 | 90%
2
3
5
7 | 100%
2
4
6
8 | | Manx
Spring | 100% shearway 10% 20% 30% 40% 50% | 0 ater ion 0 0 0 0 0 0 | 2%
0
0
0
0 | 5% 0 0 0 0 | 10%
0
0 | (% of di
20%
0
1
1
2
2 | 30% 1 1 2 2 3 | Morta l birds a 40% 1 2 2 3 4 | 50% 1 2 3 4 5 | 60% 1 2 3 5 6 | 70% 1 3 4 5 7 | 80%
2
3
5
6
8 | 90%
2
3
5
7
9 | 100%
2
4
6
8
10 | | Manx
Spring | 100% shearway migrate 10% 20% 30% 40% 50% 60% | 0 ater ion 1% 0 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5% 0 0 0 0 | 10%
0
0
1
1
1 | (% of di
20%
0
1
1
2
2
2 | 30% 1 1 2 2 3 3 | Morta birds a 40% 1 2 2 3 4 5 | 50% 1 2 3 4 5 6 | 60% 1 2 3 5 6 | 70% 1 3 4 5 7 8 | 80%
2
3
5
6
8
9 | 90%
2
3
5
7
9 | 100%
2
4
6
8
10 | | Manx | 100% shearwa g migrat 10% 20% 30% 40% 50% 60% 70% | 0 ater ion 0 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
1 | 10%
0
0
1
1
1
1 | (% of di
20% 0 1 1 2 2 2 3 | 30% 1 1 2 2 3 3 4 | Morta birds a 40% 1 2 2 3 4 5 5 | 50% 1 2 3 4 5 6 7 | 60% 1 2 3 5 6 7 | 70% 1 3 4 5 7 8 9 | 80%
2
3
5
6
8
9
11 | 90%
2
3
5
7
9
10 | 100%
2
4
6
8
10
11
13 | Table C. 65: LCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during breeding (operation). | Manx S | Shearwa
ing | ter | | | | (% of d | | ortality
birds a | level
t risk of | mortalit | ty) | | | | |---------------|----------------|-----|----|----|-----|---------|-----|---------------------|--------------------|----------|-----|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 0 | 1 | 2 | 3 | 7 | 10 | 13 | 17 | 20 | 23 | 27 | 30 | 33 | | level | 20% | 1 | 1 | 3 | 7 | 13 | 20 | 27
| 33 | 40 | 47 | 53 | 60 | 67 | | | 30% | 1 | 2 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | | ent
spl | 40% | 1 | 3 | 7 | 13 | 27 | 40 | 53 | 67 | 80 | 94 | 107 | 120 | 134 | | | 50% | 2 | 3 | 8 | 17 | 33 | 50 | 67 | 84 | 100 | 117 | 134 | 150 | 167 | | ace
k of | 60% | 2 | 4 | 10 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 | 180 | 201 | | ispla
risk | 70% | 2 | 5 | 12 | 23 | 47 | 70 | 94 | 117 | 140 | 164 | 187 | 211 | 234 | | ᇘ | 80% | 3 | 5 | 13 | 27 | 53 | 80 | 107 | 134 | 160 | 187 | 214 | 241 | 267 | | %) | 90% | 3 | 6 | 15 | 30 | 60 | 90 | 120 | 150 | 180 | 211 | 241 | 271 | 301 | | | 100% | 3 | 7 | 17 | 33 | 67 | 100 | 134 | 167 | 201 | 234 | 267 | 301 | 334 | Table C. 66: UCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during breeding (operation). | Manx S | Shearwa | ter | | | | (% of d | | ortality
 birds a | level
t risk of | mortalit | у) | | | | |---------------------------|---------|-----|----|-----|-----|---------|-----|-------------------------|--------------------|----------|------|------|------|------| | | 9 | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ent) | 10% | 3 | 6 | 16 | 32 | 64 | 95 | 127 | 159 | 191 | 223 | 254 | 286 | 318 | | level | 20% | 6 | 13 | 32 | 64 | 127 | 191 | 254 | 318 | 381 | 445 | 509 | 572 | 636 | | | 30% | 10 | 19 | 48 | 95 | 191 | 286 | 381 | 477 | 572 | 668 | 763 | 858 | 954 | | ent | 40% | 13 | 25 | 64 | 127 | 254 | 381 | 509 | 636 | 763 | 890 | 1017 | 1144 | 1272 | | em
f di | 50% | 16 | 32 | 79 | 159 | 318 | 477 | 636 | 795 | 954 | 1113 | 1272 | 1430 | 1589 | | Displacem
t risk of di | 60% | 19 | 38 | 95 | 191 | 381 | 572 | 763 | 954 | 1144 | 1335 | 1526 | 1717 | 1907 | | ispla
risk | 70% | 22 | 45 | 111 | 223 | 445 | 668 | 890 | 1113 | 1335 | 1558 | 1780 | 2003 | 2225 | | | 80% | 25 | 51 | 127 | 254 | 509 | 763 | 1017 | 1272 | 1526 | 1780 | 2034 | 2289 | 2543 | | %) | 90% | 29 | 57 | 143 | 286 | 572 | 858 | 1144 | 1430 | 1717 | 2003 | 2289 | 2575 | 2861 | | | 100% | 32 | 64 | 159 | 318 | 636 | 954 | 1272 | 1589 | 1907 | 2225 | 2543 | 2861 | 3179 | Table C. 67 LCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during Autumn migration (operation). All results are zero | | Shearwa | | | | | (% of d | | lortality
I birds a | level
t risk of | mortalit | y) | | | | |---------------------------------|---|------------------------|----------------------------------|----------------------------------|-----------------------------------|---|-----------------------|--------------------------------------|---|-----------------------------------|------------------------------|-----------------------------------|-----------------------------------|------------------------------------| | Autun | nn migra | | | - | 100/ | | | 1001 | | | | | | 10001 | | ÷ | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | le l | 10% | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | | level
acement) | 20% | 0 | 0 | 1 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 | 12 | | | 30% | 0 | 0 | 1 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 15 | 16 | 18 | | Displacement
it risk of disp | 40% | 0 | 0 | 1 | 2 | 5 | 7 | 10 | 12 | 15 | 17 | 19 | 22 | 24 | | cer
of (| 50% | 0 | 1 | 2 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | | Displacement
at risk of disp | 60% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 18 | 22 | 25 | 29 | 33 | 36 | | JIS
t ris | 70% | 0 | 1 | 2 | 4 | 8 | 13 | 17 | 21 | 25 | 30 | 34 | 38 | 42 | |
 % at | 80% | 0 | 1 | 2 | 5 | 10 | 15 | 19 | 24 | 29 | 34 | 39 | 44 | 48 | | | 90% | 1 | 1 | 3 | 5 | 11 | 16 | 22 | 27 | 33 | 38 | 44 | 49 | 55 | | - 5 | 1000/ | 1 | 14 | 2 | 6 | 140 | 110 | | | | 140 | 140 | | | | | 100%
shearwa | 1
ater | 1 | 3 | 6 | 12 | 18 | | 30 | | 42 | 48 | 55 | 61 | | Manx | | | 1 | 3 | 6 | | | Morta | | I | | <u> 48</u> | 55 | 61 | | lanx | shearwa | | 2% | 5 % | 10% | | | Morta | lity leve | I | | 80% | 90% | | | /lanx | shearwa | ition | ' | | | (% of di | splaced | Morta
birds a | lity leve
t risk of | l
mortali | ty) | | | | | /lanx
Autum | shearwa | ation
1% | 2% | 5% | 10% | (% of di | splaced | Morta
birds a | lity leve
t risk of
50% | l
mortali
60% | ty)
70% | 80% | 90% | 100% | | Manx
Autum | shearwann migra | 1%
0 | 2% | 5% | 10% | (% of di
20% | 30% | Morta birds a 40% | lity levent risk of 50% | mortali 60% | 70% | 80% | 90%
0 | 100 % | | Manx
Autum | shearwann migra
10%
20% | 1%
0
0 | 2% 0 0 | 5%
0 | 10%
0
0 | 20% 0 0 | 30% 0 0 | Morta birds a 40% 0 0 | t risk of 50% 0 0 | 60%
0 | 70% 0 0 | 80% 0 0 | 90% 0 0 | 100% 0 0 | | Manx
Autum | nn migra 10% 20% 30% | 1%
0
0 | 2% 0 0 0 | 5% 0 0 0 | 10%
0
0 | (% of di
20%
0
0 | 30% 0 0 0 | Morta birds a 40% 0 0 0 | t risk of 50% 0 0 0 | 60%
0
0 | 70%
0
0
0 | 80% 0 0 0 | 90% 0 0 0 | 100%
0
0 | | Manx
Autum | 10%
20%
30%
40% | 1%
0
0
0 | 2% 0 0 0 0 | 5%
0
0
0 | 10%
0
0
0 | (% of di
20%
0
0
0 | 30% 0 0 0 0 | Morta birds a 40% 0 0 0 0 | st risk of 50% 0 0 0 0 | 60%
0
0
0
0 | 70%
0
0
0
0 | 80%
0
0
0 | 90%
0
0
0 | 100%
0
0
0
0 | | Manx
Autum | 10%
20%
30%
40% | 1%
0
0
0
0 | 2% 0 0 0 0 0 | 5%
0
0
0
0 | 10%
0
0
0
0
0 | 20% 0 0 0 0 0 0 | 30% 0 0 0 0 0 | Morta birds a 40% 0 0 0 0 0 | Solution | 60%
0
0
0
0
0 | 70%
0
0
0
0
0 | 80%
0
0
0
0 | 90%
0
0
0
0 | 100%
0
0
0
0 | | Manx
Autum | 10%
20%
30%
40%
50% | 1% 0 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5%
0
0
0
0
0 | 10%
0
0
0
0
0 | 20% 0 0 0 0 0 0 0 0 | 30% 0 0 0 0 0 0 0 | Morta birds a 40% 0 0 0 0 0 0 0 | Solution | 60%
0
0
0
0
0 | 70% 0 0 0 0 0 0 0 | 80%
0
0
0
0
0
0 | 90%
0
0
0
0
0 | 100%
0
0
0
0
0 | | Manx | 10%
20%
30%
40%
50%
60%
70% | 1% 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
0
0
0
0 | 10%
0
0
0
0
0
0 | (% of di
20% 0 0 0 0 0 0 0 0 | 30% 0 0 0 0 0 0 0 0 0 | Morta birds a 40% 0 0 0 0 0 0 0 0 0 | 50% 0 0 0 0 0 0 0 0 | 60%
0
0
0
0
0
0 | 70% 0 0 0 0 0 0 0 0 0 | 80%
0
0
0
0
0
0 | 90%
0
0
0
0
0
0 | 100%
0
0
0
0
0
0 | Table C. 68 UCI predicted Manx shearwater mortality for the Morgan Array Area plus 2 km buffer during Autumn migration (operation). | lanx | Shearwa | ater | | | | | | lortality | | | | | | | |----------------------------------|--|------------------------------|---------------------------------------|----------------------------------|--|-------------------------------------|------------------------------|----------------------------|-------------------------------|---|-----------------------|--|---|--| | 141110 | nn migra | tion | | | | (% of d | isplaced | l birds a | t risk of | mortali | ty) | | | | | Mutun | III IIIIgra | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | int) | 10% | 0 | 1 | 2 | 4 | 7 | 11 | 15 | 19 | 22 | 26 | 30 | 33 | 37 | | a e | 20% | 1 | 1 | 4 | 7 | 15 | 22 | 30 | 37 | 45 | 52 | 59 | 67 | 74 | |
ievei
acement) | 30% | 1 | 2 | 6 | 11 | 22 | 33 | 45 | 56 | 67 | 78 | 89 | 100 | 111 | | | 40% | 1 | 3 | 7 | 15 | 30 | 45 | 59 | 74 | 89 | 104 | 119 | 134 | 148 | | Displacement
at risk of displ | 50% | 2 | 4 | 9 | 19 | 37 | 56 | 74 | 93 | 111 | 130 | 148 | 167 | 186 | | o g | 60% | 2 | 4 | 11 | 22 | 45 | 67 | 89 | 111 | 134 | 156 | 178 | 200 | 223 | | ısp
ris | 70% | 3 | 5 | 13 | 26 | 52 | 78 | 104 | 130 | 156 | 182 | 208 | 234 | 260 | | | 80% | 3 | 6 | 15 | 30 | 59 | 89 | 119 | 148 | 178 | 208 | 237 | 267 | 297 | | | 000/ | 3 | 7 | 17 | 33 | 67 | 100 | 134 | 167 | 200 | 234 | 267 | 301 | 334 | | %) | 90% | | | _ | | | | | | | | | | | | | 100% | 4 | 7 | 19 | 37 | 74 | 111 | 148 | 186 | 223 | 260 | 297 | 334 | 371 | | | | 4 | 7 | _ | 37 | | | Morta | lity leve | I | | 297 | 334 | 371 | | | 100% | 4 | 7 | _ | 37 | | | Morta | | I | | 297 | 334 | 371 | | lanx | 100% | 4
ater | 7 | _ | 37 | | | Morta | lity leve | I | | 297 | 334 | 371 | | lanx | 100%
shearwa | 4
ater | 7
2% | _ | 37
10% | | | Morta | lity leve | I | | 297
80% | 334
90% | | | lanx | 100%
shearwa | 4
ater
ation | , , , , , , , , , , , , , , , , , , , | 19 | | (% of di | isplaced | Morta
I birds a | lity leve
t risk of | mortali 60% | 70% | 80% | | | | lanx | 100%
shearwa | 4 ater ation 1% | 2% | 19
5% | 10% | (% of di | isplaced | Morta
I birds a
40% | lity leve
t risk of
50% | l
mortali
60% | ty)
70% | 80% | 90% | 100% | | lanx | 100% shearwann migra | 4 ater ation 1% | 2% | 5%
0 | 10% | (% of di
20% | 30% | Morta I birds a 40% | lity levent risk of 50% | mortali 60% | 70% | 80% | 90% | 100 % | | lanx | 100%
shearwann migra
10%
20% | 4 ater ation 1% 0 0 | 2% 0 0 | 5%
0 | 10%
0
1 | (% of di
20% | 30%
1
2 | Morta l birds a 40% 2 3 | t risk of 50% 2 4 | 60%
2
5 | 70% 3 5 | 80% 3 6 | 90% 4 7 | 100 % | | Manx | 100% shearward 10% 20% 30% | 4 ater ation 1% 0 0 0 | 2% 0 0 0 | 5%
0 | 10%
0
1 | (% of di
20% 1 2 2 | 30%
1
2
4 | Morta l birds a 40% 2 3 5 | t risk of 50% 2 4 6 | 60%
2
5
7 | 70% 3 5 8 | 80% 3 6 9 | 90% 4 7 11 | 100%
4
8
12 | | lanx | 100%
shearwa
nn migra
10%
20%
30%
40% | 4 ater 1% 0 0 0 0 | 2% 0 0 0 0 | 5%
0 | 10%
0
1
1
2 | (% of di
20%
1
2
2
3 | 30%
1
2
4
5 | Morta a 40% 2 3 5 6 | 50%
2
4
6
8 | 60%
2
5
7
9 | 70% 3 5 8 11 | 80%
3
6
9
12 | 90%
4
7
11 | 100%
4
8
12
16 | | lanx | 100%
shearwann migra
10%
20%
30%
40%
50% | 4 ater ation 1% 0 0 0 0 0 | 2%
0
0
0
0 | 5%
0 | 10%
0
1
1
2 | 20% 1 2 2 3 4 | 30%
1
2
4
5
6 | Morta a 40% 2 3 5 6 8 | 50%
2
4
6
8
10 | 60%
2
5
7
9 | 70% 3 5 8 11 | 80%
3
6
9
12
16 | 90%
4
7
11
14
18 | 100%
4
8
12
16
20 | | lanx | 100% shearway 10% 20% 30% 40% 50% 60% | 4 ater ation 1% 0 0 0 0 0 0 | 2%
0
0
0
0
0 | 5%
0 | 10%
0
1
1
2
2 | 20% 1 2 2 3 4 5 | 30% 1 2 4 5 6 7 | Morta a 40% 2 3 5 6 8 9 | 50% 2 4 6 8 10 12 | 60%
2
5
7
9
12 | 70% 3 5 8 11 14 16 | 80%
3
6
9
12
16
19 | 90%
4
7
11
14
18
21 | 100%
4
8
12
16
20
23 | | lanx | 100% shearwa 10% 20% 30% 40% 50% 60% 70% | 4 ater 1% 0 0 0 0 0 0 0 0 0 | 2%
0
0
0
0
0
0 | 5%
0
0
1
1
1
1 | 10%
0
1
1
2
2
2
2 | 20% 1 2 2 3 4 5 5 | 30% 1 2 4 5 6 7 | Morta a 40% 2 3 5 6 8 9 11 | 50% 2 4 6 8 10 12 14 | 60%
2
5
7
9
12
14
16 | 70% 3 5 8 11 14 16 19 | 80%
3
6
9
12
16
19
22 | 90%
4
7
11
14
18
21
25 | 100%
4
8
12
16
20
23
27 | # C.7 Red-throated diver Table C. 69: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Autumn migration (construction and decommissioning). | | roated o | | | | | (% | of displa | | llity leve
ds at ris | | rtality) | | | | |----------------------------------|----------|----|----|----|-----|-----|-----------|-----|-------------------------|-----|----------|-----|-----|------| | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>e</u> | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
It risk of displ | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | σ | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 70: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Autumn migration (construction and decommissioning). | | roated o | | | | | (% | of displa | | ality leve
ds at ris | | rtality) | | | | |----------------------------------|----------|-----------|----|----|-----|-----|-----------|-----|-------------------------|-----|----------|-----|-----|------| | | n migrat | ion
1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <u>ac</u> | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
It risk of displ | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
G | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 71: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Spring migration (construction and decommissioning). | | roated c | | (% of | Morta
displace | lity level
ed birds | | f mortal | ity) | | | | | | | |---------------|-----------|----|-------|-------------------|------------------------|-----|----------|------|-----|-----|-----|-----|-----|------| | Spring | migration | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent
spl | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | co. | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 72: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Spring migration (construction and decommissioning). | Red-th | roated o | diver | | | | (% | of displa | | ality leve
ds at ris | | rtality) | | | | |----------------------------------|-----------|-------|----|----|-----|-----|-----------|-----|-------------------------|-----|----------|-----|-----|------| | Spring | migration | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ment level
displacement) | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ac e | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displ | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | TO . | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 73: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the non-breeding season (construction and decommissioning). | Red-th | roated c | liver | | | | (% | of displa | | ality leve
ds at ris | | rtality) | | | | |---------------|----------|-------|----|----|-----|-----|-----------|-----|-------------------------|-----|----------|-----|-----|------| | Non-b | reeding | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% |
60% | 70% | 80% | 90% | 100% | | | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | co. | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 74: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the non-breeding season (construction and decommissioning). | | roated o | liver | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |---|----------|-------|----|----|-----|---|-----|-----|-----|-----|-----|-----|-----|------|--| | NON-D | reeding | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | ent) | 10% | 0 | О | 0 | 0 | О | 0 | 0 | 0 | 0 | О | 0 | 0 | 0 | | | level | 15% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | <u>ace</u> | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Displacement level
t risk of displacement) | 25% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | lace
k of | 35% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ispla
risk | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 45% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | %) | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Table C. 75: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Autumn migration (operations phase). | | throated | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |----------------------------------|----------|-----------|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | Autum | n migrat | ion
1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | le, | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displ | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <i>a</i> | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 76: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Autumn migration (operations phase). | | throated | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |----------------------------------|-------------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | | ii iiligrat | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | О | 0 | 0 | О | 0 | 0 | О | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | e ace | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displ | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | co. | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 77: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Spring migration (operations phase). | | throated | | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |-----------------------------------|----------|----|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | | migratio | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displa | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | co. | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 78: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the Spring migration (operations phase). | Red- | throated | d diver | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |-----------------------------------|----------|---------|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | Spring | migratio | on | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | ment level
displacement) | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displa | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | · · · | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 79: LCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the non-breeding season (operations phase). | | throated | d diver | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | |-----------------------------------|----------|---------|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------| | Non-bi | reeding | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | £ | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90% | 0 | | _ <u>=</u> | | | U | | | + | + | _ | | +- | U | +- | U | | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ent | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | em
f di | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | ace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Displacement
it risk of displa | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | <i>a</i> | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Table C. 80: UCI predicted red-throated diver mortality for the Morgan Array Area plus 4 km buffer during the non-breeding season (operations phase). | Red | throated | d diver | | | Mortality level (% of displaced birds at risk of mortality) | | | | | | | | | | | |---------------|----------|---------|----|----|---|-----|-----|-----|-----|-----|-----|-----|-----|------|--| | Non-b | reeding | | | | | | | | | | | | | | | | | | 1% | 2% | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | | | ent | 10% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | level | 20% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 30% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ent | 40% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 50% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | lace
k of | 60% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | ispla
risk | 70% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | <i>a</i> | 80% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | %) | 90% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | 100% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |